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Abstract

Robust long-term positioning for autonomous mobile robots is essential for many applications. In many
environments this task is challenging, as errors accumulate in the robot’s position estimate over time. The
robot must also build a map so that these errors can be corrected when mapped regions are re-visited; this
is known as Simultaneous Localisation and Mapping, or SLAM.

Successful SLAM schemes have been demonstrated which accurately map tracks of tens of kilometres, however
these schemes rely on expensive sensors such as laser scanners and inertial measurement units. A more
attractive, low-cost sensor is a digital camera, which captures images that can be used to recognise where
the robot is, and to incrementally position the robot as it moves. SLAM using a single camera is challenging
however, and many contemporary schemes suffer complete failure in dynamic or featureless environments, or
during erratic camera motion. An additional problem, known as scale drift, is that cameras do not directly
measure the scale of the environment, and errors in relative scale accumulate over time, introducing errors
into the robot’s speed and position estimates.

Key to a successful visual SLAM system is the ability to continue operation despite these difficulties, and
to recover from positioning failure when it occurs. This thesis describes the development of such a scheme,
which is known as BoWSLAM. BoWSLAM enables a robot to reliably navigate and map previously unknown
environments, in real-time, using only a single camera.

In order to position a camera in visually challenging environments, BoWSLAM combines contemporary visual
SLAM techniques with four new components. Firstly, a new Bag-of-Words (BoW) scheme is developed, which
allows a robot to recognise places it has visited previously, without any prior knowledge of its environment.
This BoW scheme is also used to select the best set of frames to reconstruct positions from, and to find
efficient wide-baseline correspondences between many pairs of frames. Secondly, BaySAC, a new outlier-
robust relative pose estimation scheme based on the popular RANSAC framework, is developed. BaySAC
allows the efficient computation of multiple position hypotheses for each frame. Thirdly, a graph-based
representation of these position hypotheses is proposed, which enables the selection of only reliable position
estimates in the presence of gross outliers. Fourthly, as the robot explores, objects in the world are recognised
and measured. These measurements enable scale drift to be corrected. BoWSLAM is demonstrated mapping
a 25 minute 2.5km trajectory through a challenging and dynamic outdoor environment in real-time, and
without any other sensor input; considerably further than previous single camera SLAM schemes.
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BoWSLAM, and many of its component parts, have previously been described in several refereed publications,
which are listed below.

Firstly, the first version of our BoW scheme for fast robot localisation in previously unknown environments
is described in the following paper:

T. Botterill, S. Mills, and R. Green. Speeded-up Bag-of-Words algorithm for robot localisation
through scene recognition. In Proceedings of Image and Vision Computing New Zealand, Lincoln,
NZ, November 2009.

Secondly, BaySAC, our improved version of the RANSAC robust estimation framework which allows camera
positions to be computed quickly and reliably from unreliable feature matches, is described in the following
paper:

T. Botterill, S. Mills, and R. Green. New conditional sampling strategies for speeded-up
RANSAC. In Proceedings of the British Machine Vision Conference, London, September 2009.

Thirdly, the BoWSLAM scheme for robust single camera SLAM, is described in the following paper:

T. Botterill, S. Mills, and R. Green. Bag-of-words-driven Single Camera SLAM. To appear in
the Journal of Field Robotics, 2010.

Fourthly, initial work on the SCORE scheme to learn and recognise classes of objects in a robot’s environment,
and to use measurements of these objects to correct scale drift, is described in the following paper:

T. Botterill, R. Green, and S. Mills. A Bag-of-Words Speedometer for Single Camera SLAM. In
Proceedings of Image and Vision Computing New Zealand, Wellington, NZ, November 2009.

In addition I have co-authored several publications with Chris Hide et al., which integrate several components
of BoWSLAM into an inertial measurement unit (IMU)-based indoor pedestrian navigation sensor. Firstly, a
navigation sensor using BoW location recognition and an IMU to localise a pedestrian in a previously-mapped
environment is described in the following paper:

C. Hide, T. Botterill, and M. Andreotti. An integrated IMU, GNSS and image recognition sensor
for pedestrian navigation. In Proceedings of the Institute of Navigation GNSS Conference, Fort
Worth, Texas, 2009.

Secondly, details of how to compute camera orientations relative to a prior map using BaySAC, and how to
integrate these measurements into a pedestrian navigation system, are described in the following paper:
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C. Hide and T. Botterill. Development of an integrated IMU, image recognition and orientation
sensor for pedestrian navigation. In Proceedings of the International Technical Meeting of the
Institute of Navigation, San Diego, CA, 2010.

Thirdly, a scheme to use a hand-held camera as part of a pedestrian navigation scheme, by computing
a sparse optical flow field from the ground plane using BaySAC, then integrating these measurements of
orientation and velocity with measurements from an IMU, are described in the following paper:

C. Hide, T. Botterill, and M. Andreotti. Vision-aided IMU for pedestrian navigation. In
Proceedings of the Institute of Navigation GNSS Conference, Fort Worth, Texas, 2010.
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Chapter 1

Introduction

Reliable long term positioning is an essential enabling technology for autonomous mobile robots (a ‘core
competency’ according to Thrun et al., 2005), and many solutions have been proposed. However, in many
real-world situations reliable positioning is still not possible, for example positioning indoors with low-cost
sensors. In many environments cameras appear ideal sensors for long term positioning; they collect rich
information about the environment that may be used both to recognise when places are re-visited, even when
the robot is lost, and to estimate the incremental motion of the robot. Previous solutions for positioning using
vision can accurately position a camera for long periods over a limited area, but on a larger scale they often
suffer from several major problems. These problems include including complete failure when measurements
are interpreted incorrectly, difficulties negotiating visually challenging environments, and high algorithmic
complexity which limits large scale operation. As a result, they have only been demonstrated on relatively
small-scales, of a few hundred metres at most, and through mostly static environments.

In order to address the limitations of previous schemes, and to demonstrate that a single camera is a suitable
sensor for robust long-term positioning, I have developed a new scheme, BoWSLAM, which enables a mobile
robot equipped with a single camera to position itself in real-time as it explores a previously unknown
environment. BoWSLAM combines the latest contemporary robot navigation techniques with new algorithms
designed to enable the successful navigation of dynamic environments despite erratic, unpredictable camera
motion, corrupted position estimates, total disorientation, and large accumulated errors. A map of the
environment that has been explored is built and this map is refined and improved when places are re-visited,
hence enabling accurate long-term positioning.

The novel algorithms which enable BoWSLAM to operate robustly in these circumstances include firstly,
a Bag-of-Words (BoW) scheme allowing a robot to recognise places that have been visited before, without
requiring any prior knowledge of its environment. Secondly, a new robust estimation framework, BaySAC, is
developed, which enables faster relative camera pose computation in visually challenging dynamic environ-
ments. Thirdly, a scheme to efficiently calculate many position hypotheses from the BoW image representa-
tion is proposed, and a graph-based map of these multiple position hypotheses is developed, allowing robust
mapping based on only the most reliable position estimates. Fourthly, the SCORE2 (Scale Correction by
Object Recognition) scheme is developed. SCORE2 recognises and measure objects which are observed, then
to uses these measurements to improves the accuracy of maps. A complete summary of the contributions of
this thesis is given in Section 1.4.

The most successful schemes to-date for positioning using a single camera (Nistér et al., 2006; Dellaert and
Kaess, 2006; Clemente et al., 2007; Lemaire and Lacroix, 2007; Eade and Drummond, 2008; Mouragnon
et al., 2009; Strasdat et al., 2010) have been demonstrated navigating tracks of a few hundred metres at
most, through mostly static environments. In this thesis, BoWSLAM is demonstrated mapping a 2.5km
trajectory in real-time through a dynamic environment, with no other sensor input, motion assumptions or
odometry input; considerably further than previous schemes. Together with results from several other large
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scale indoor and outdoor datasets, this demonstrates for the first time that a single camera is a feasible
sensor for long-term navigation. BoWSLAM is designed to enable the positioning of low-cost robots with
poor odometry or unpredictable motion, for example walking robots or quadrotors, or to aid pedestrian
navigation.

Although designed to enable reliable navigation using a single camera, these new algorithms have many
additional applications. The BoW scheme has been integrated into other navigation schemes where the
ability to recognise a camera’s location is useful (Hide et al., 2009; Hide and Botterill, 2010), and could be
incorporated into schemes providing location-based services. The BaySAC framework can be applied to a
wide range of computer vision problems where outliers are common, and for robust estimation problems
in other fields. BoWSLAM’s robust mapping framework, where only the most reliable of multiple position
hypotheses are used, is applicable to any robot navigation scheme where gross errors can occur. Finally, the
combination of algorithms proposed has applications to other computer vision problems, such as real-time
mapping.

This chapter is arranged as follows: the following section describes the potential applications of autonomous
mobile robots, Section 1.2 outlines the problem of long-term positioning for these mobile robots, Section 1.3
gives an overview of the proposed new solution for long-term robot positioning, together with an outline of
this thesis, and Section 1.4 summarises the key contributions of this thesis.

1.1 Motivation

Mobile robots that can position themselves autonomously over long periods are enabling the automation
of tasks previously requiring human operators. Examples include robotic vehicles equipped with absolute
position sensors such as Global Positioning System (GPS) receivers which plough fields (Tillett, 1991), search
for meteors in the Antarctic (Apostolopoulos et al., 2000), or drive autonomously through a busy urban
environment in order to compete in the DARPA urban challenge (Leonard et al., 2008). Other prototype
robots that can localise themselves within previously mapped and tagged environments include automated
forklift trucks working in factories (Tamba et al., 2009), and driverless taxis (Firmin, 2006). However in
many environments Global Navigation Satellite System (GNSS) signals are unavailable or unreliable, and
prior mapping, or the addition of localisation infrastructure, is impractical or prohibitively expensive. In
these environments successful applications of autonomous mobile robots are rare. Mobile robots’ inability
to position themselves reliably for long periods is limiting their potential applications.

These environments where low-cost absolute positioning is not feasible include the places many people work,
such as homes, offices and supermarkets. Mobile robots working in these environments today are limited to
the simplest tasks where positioning is not required (such as floor-cleaning by following a somewhat inefficient
random walk; Prassler et al., 2000), but robots that could position themselves autonomously could one day
automate many additional tasks such as providing an indoor courier service (Engelberger, 1993) or carrying
out environmental monitoring missions (Elfes et al., 2008). Other environments where autonomous mobile
robots could usefully work include places where it is dangerous or expensive to send human workers, such as
in contaminated sites, underwater, or in dense forests. Autonomous mobile robots also have the potential
to work on other planets or deep underground; places out-of-range of human operators.

Applications of robot positioning schemes are not limited to autonomous mobile robots; they include provid-
ing real-time positions and maps to operators of remotely controlled vehicles, semi-autonomous wheelchair
control (Park et al., 2010), and the construction of detailed digital models (Newcombe and Davison, 2010) or
maps (Hygounenc et al., 2004; Johnson-Roberson et al., 2010). A closely related problem is pedestrian navi-
gation, with applications including ‘pedestrian satnav’ systems (Hide et al., 2009), providing location-based
services to users of mobile devices (Raper et al., 2007) or wearable computers (Wangsiripitak and Murray,
2009), and navigation aids for blind or partially sighted people (Coughlan and Manduchi, 2009).
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1.2 Mobile robots and robot positioning

A vast range of mobile robot designs have been proposed or constructed. These robots, the environments in
which they operate, and the sensors with which they are equipped are described in detail in the following
chapter. These robots including wheeled, walking, flying and swimming robots, which are equipped with
a wide range of sensors which may be used for positioning, including Inertial Measurement Units (IMUs),
laser and sonar scanners, digital cameras, and magnetometers. Information about the robot’s control inputs
is also useful for positioning, in conjunction with odometry measurements (for example wheel movement
measured using a wheel encoder). These sensor and odometry measurements can be used for positioning in
two different ways: firstly, sensors which measure a robot’s environment may be used to localise the robot,
by matching features of the environment to the robot’s internal map. Secondly, the robot can be positioned
incrementally: its position relative to a previous pose can be computed from a combination of its control
inputs or odometry, its observations of the environment which change as it moves, and knowledge about its
dynamics and kinematics. These small relative position estimates can be accumulated to reconstruct the
robot’s path as it moves through its environment; this is known as dead-reckoning.

All of these sensor measurements contain uncertainty however, and position estimates obtained by dead-
reckoning will accumulate errors over time, eventually rendering them useless. For long-term positioning
the environment being explored must also be mapped, so that when the robot re-visits mapped areas it can
correct errors in both its position estimate and in the map. This combination of positioning and mapping
is known as Simultaneous Localisation and Mapping, or SLAM (Dissanayake et al., 2001), and numerous
SLAM schemes have been proposed; these are reviewed in detail in Chapter 3.

SLAM schemes have been proposed using many different combinations of sensors, and some recent schemes
allow certain robots to position themselves over tracks of many kilometres, and to generate accurate maps of
everywhere that has been explored (Nieto et al., 2003; Newman et al., 2009; Bosse and Zlot, 2008; Sibley et al.,
2010). These schemes still have many limitations however, including complete failure when measurements
containing gross errors are accidentally used (Bailey and Durrant-Whyte, 2006; Thrun, 2002), and high
computational cost and complexity limiting their long term use. These limitations must be overcome if
SLAM is to be used for real-world applications.

A further limitation of these SLAM schemes are the relatively expensive, heavy and power-hungry sensors
used, including laser scanners and IMUs. For positioning of lightweight, low-cost robots, for example robots
that will work in homes or carry out environmental monitoring, the use of lower-cost sensors is desirable. In
addition, some of these robots, such as walking robots or small flying robots, have poor odometry which is
also subject to gross errors. SLAM schemes suitable for these platforms, or for human navigation aids, must
be able to navigate without reliable odometry inputs.

One low-cost, reasonably low-power and passive sensor which is particularly suitable for robust robot posi-
tioning is a digital camera. Cameras can operate in a wide range of environments and capture large amounts
of detailed information about the world. This information may be used for positioning in three ways: firstly
for localisation, by recognising places which have been visited previously; secondly, for incremental posi-
tioning, by observing the positions of objects relative to the camera as the camera moves; and thirdly for
mapping the environment. Unlike many other sensors, cameras collect enough distinctive information about
the world to recognise where they are even after becoming completely lost (Cummins and Newman, 2009;
Konolige et al., 2009). While a stereo camera provides depth information useful for positioning, this is not
necessary; a single camera can infer the depth of observed objects either by observing them from different
positions, or by recognising objects of known size.

While a single camera appears to be an ideal sensor for SLAM, existing schemes for navigating using monoc-
ular vision are prone to failure due to gross errors or disorientation in difficult environments (Chekhlov et al.,
2006), as both relative position estimates and absolute localisation estimates from computer vision are sub-
ject to gross errors. The causes of these errors include incorrect matching of similar-looking objects between
pairs of frames (Eade and Drummond, 2008), and moving objects (Cummins and Newman, 2008a; Williams
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et al., 2008). In addition, high computational costs caused by high algorithmic complexity eventually limit
many single camera SLAM schemes’ real-time operation.

Given these limitations, I propose that a SLAM scheme allowing robust positioning using a single camera
should be designed to meet the following five requirements:

• The SLAM scheme must actively detect when known locations are re-visited, in order to recover from
gross errors in position, and to maintain a consistent and accurate map for extended periods.

• The scheme must have the ability to compute relative positions from frames captured from significantly
different viewpoints, so that positioning does not fail when sequences of frames are unusable due to
occlusion, motion blur, or erratic camera motion.

• Position estimates must be robust in the presence of moving objects and in self-similar environments.

• Despite robust position estimation, errors will inevitably still occur. A framework with the ability to
reject these erroneous position estimates before they corrupt a global map is essential for long-term
navigation.

• The computational cost and complexity of SLAM must be low enough that a usefully large environment
can be explored, and must grow only as a function of the area which is explored, hence enabling
positioning to continue indefinitely in a bounded environment.

The remainder of this thesis describes BoWSLAM, a single camera SLAM scheme designed to meet these
requirements. BoWSLAM combines a range of efficient contemporary techniques with new robust algorithms,
in order to meet these criteria. These new algorithms include a new BoW scheme, which enables a robot to
recognise where it is, even when completely lost, and also enables features to be matched efficiently between
frames. A selection of the latest contemporary algorithms for relative pose computation, together with a new
and efficient estimation framework, BaySAC, allow multiple position estimates for the robot to be computed
as it explores. These multiple position estimates are represented in a novel graph-based map. From this
map, a subgraph consisting of only the most reliable position estimates is selected and optimised using the
TORO optimisation framework (Grisetti et al., 2007b), producing consistent global maps. This combination
of techniques is validated by generating accurate global maps from long video sequences in real-time, despite
erratic camera motion, moving objects, and complete disorientation.

While for accurate and robust robot positioning a combination of sensors is arguably the best approach
(Section 2.4), additional sensors will add to the cost, weight and power requirements of a system, and
hence it is worthwhile to investigate how successful navigation with a single camera can be. BoWSLAM
demonstrates the strength of cameras alone as positioning sensors, however the robust techniques developed
to enable navigation using a single camera are also applicable to systems integrating vision and other sensors,
or navigation systems that do not use vision.

1.3 Thesis structure

This thesis describes the development of BoWSLAM. To achieve this, components must be designed or
selected to perform several important roles; these components are described in chapters 4 through to 7,
then Chapter 8 describes BoWSLAM itself, which combines these components with other novel techniques.
Chapters 9 and 10 describe an extension to BoWSLAM (using object recognition to correct the problem of
scale drift), and an alternative use of this combination of components (video mosaicing) respectively. More
details on each chapter are now given.

Firstly, a wide range of robot designs have been proposed, and many different schemes have been proposed to
enable these robots to navigate autonomously. Chapter 2 describes the range of robot platforms available and
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the sensors with which they are equipped, and Chapter 3 analyses the leading techniques for positioning these
robots, including the optimisation algorithms proposed to solve the SLAM problem, and the applications of
these algorithms to visual SLAM.

Secondly, in order to position and localise a camera using vision, images must be described in a way that
allows them to be compared efficiently. The many different ways images can be described are reviewed in
Chapter 4.

A proposed requirement of a Single Camera SLAM system was to enable a robot to localise itself in a map,
even following large errors in positioning, or when the robot has become completely lost and disoriented.
The leading schemes for active localisation using computer vision are based on the Bag-of-Words (BoW)
algorithm, a system for efficiently encoding and comparing sets of descriptors which describe images. In
Chapter 5 a BoW implementation is developed which supports real-time indexing of frames, and which can
learn how to describe novel environments as they are encountered. This scheme is validated on a large
standard dataset (Nistér and Stewénius, 2006), and in an indoor pedestrian navigation experiment.

A second proposed requirement for reliable Single Camera SLAM is that the cameras’ relative pose can be
estimated reliably between pairs of frames, even in the case of substantial camera motion, dynamic objects
and similar-looking features. In Chapter 6, a selection of the latest contemporary algorithms for two-view
relative pose estimation are reviewed, and an appropriate combination of algorithms is selected. Computing
relative poses with this combination of algorithms is expensive however, and this cost is dominated by the
time needed to remove outliers using the popular RANSAC framework. Therefore, in Chapter 7, BaySAC,
a new method for robust model fitting is described. BaySAC uses the prior probabilities of feature point
matches to speed-up the identification of inliers in the presence of high rates of outliers, and is shown to
outperform previous RANSAC sampling strategies on simulated data, and for relative pose estimation with
real data.

Chapter 8 describes BoWSLAM, a scheme which combines BoW localisation and BaySAC robust relative
positioning in a novel SLAM framework, in order to allow a mobile robot to navigate dynamic environments
where erratic motion, motion blur, and self-similar features make the use of computer vision challenging.
Two new uses for the Bag-of-Words image representation allow multiple position hypotheses to be computed
for each frame in real-time: this is used firstly, to select the best set of frames to reconstruct positions from;
and secondly, to give efficient wide-baseline correspondences between pairs of frames. A novel graph-based
representation of these position hypotheses enables the modeling and correction of errors in scale in a dual
graph, and the selection of only reliable position estimates in the presence of gross outliers. In this chapter the
abilities of BoWSLAM are demonstrated on several datasets, including a 25 minute 2.5km trajectory through
a challenging and dynamic outdoor environment without any other sensor input; considerably further than
previous single camera SLAM schemes.

One significant limitation of positioning using a single camera is scale drift—the size of the world and speed
of the camera can only be estimated up to an unknown scale factor, and as the robot explores, small errors
in estimating the relative scale of the features it observes will accumulate, eventually corrupting its position
estimate. To enable BoWSLAM to negotiate the most challenging environments, the scale of the world is
assumed to follow a particular distribution. This assumption is not true in general however; a robot can
travel between different environments where objects occur at a range of different scales. In this circumstance
the invalid scale assumption causes distortions in global maps. In Chapter 9 a novel solution to the problem
of scale drift based on recognising objects of known scale is described. Our BoW scheme is modified to learn
object classes, to recognise object instances, and to use measurements of these objects to correct scale drift.
These object observations reduce scale drift by 75% while navigating an indoor environment.

A closely related problem to single camera SLAM is image mosaicing; this is the process of joining overlapping
images together to form a larger image, hence enlarging a cameras’ field-of-view. One application for image
mosaicing is to increase the field-of-view of a camera streaming images back from an aeroplane, to aid an
operator by keeping features of interest in view for longer. Chapter 10 describes such a mosaicing scheme,
which operates in a similar way to BoWSLAM: the BoW scheme enables overlapping images to be selected,
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BaySAC enables the transformations between pairs of images to be computed efficiently, and an optimised
renderer allows a seamless video-mosaic to be displayed in real-time.

The final chapter, Chapter 11, summarises the results from previous chapters, and describes how future
developments will further improve these results and enable BoWSLAM to be deployed on autonomous
mobile robots.

BoWSLAM incorporates and builds on results from across the computer vision and robotics literature,
including, most importantly, the large amount of prior research into SLAM and positioning with a single
camera. This literature is analysed in Chapter 3, then additional literature relevant to each of the different
components of BoWSLAM is introduced as they are developed as follows: the range of potential platforms
and the sensors with which they are equipped are reviewed in the following chapter. Relevant literature
relating to image feature detection and description is introduced in Chapter 4. Contemporary techniques
for robot localisation, including the Bag-of-Words algorithm, are reviewed in Chapter 5. Algorithms for
estimating relative camera poses from image pairs are described in Chapter 6. The RANSAC framework,
and many of the variations to it which have been proposed, are analysed in Chapter 7. A summary of
those object recognition techniques which are suitable for real-time use on robotic platforms is given in
Chapter 9. Finally, a review of contemporary approaches to real-time incremental image mosaicing is given
in Chapter 10.

Chapters have abstracts, in order to provide a concise overview of their aims and conclusions (although
many have not been published as papers). A glossary of abbreviations and technical terms is provided at
the end of the thesis, and mathematical notation used in each chapter is summarised in Tables 5.1, 7.1, 8.1
and 9.1, and introduced in the text as required. Natural logarithms are used unless otherwise stated, and
maps typically have arbitrary distance units, due to an unknown global scale, and local distortions. An
overview of the Singular Value Decomposition, and the Levenberg-Marquardt algorithm, which are used
frequently throughout this thesis for linear and nonlinear least-squares optimisation respectively, is given in
Appendix A.

Some terminology used throughout the thesis includes localisation, which refers to positioning with respect
to a map; pose, which refers to the combination of position and orientation, and gross errors, which refers
to measurement errors many times larger than would ever be observed if measurements were approximately
normally distributed. Gross errors are predominately caused by incorrectly matching features between
images, or by assuming that moving objects are static.

All execution times given are calculated on a computer with 4GB of RAM and a 3GHz Intel Core 2 Duo
processor, running C++ code compiled using gcc.

The source code for BoWSLAM and all of its component parts is available online at http://www.hilandtom.com/tombotterill/
The same website features videos of BoWSLAM, and links to publications related to this thesis.

1.4 Contributions of this thesis

This section lists the important contributions of this thesis. The main contribution is to design and develop
BoWSLAM, a robust single camera SLAM scheme which is capable of positioning a camera for extended
periods in previously unknown environments, in real-time. BoWSLAM includes a combination of new algo-
rithms enabling multiple relative pose estimates for each camera position to be computed efficiently. A novel
graph-based map of these multiple relative pose estimates enables an outlier-free subset of pose estimates to
be selected and optimised.

Several additional contributions are also made: in Chapter 5 a simple scheme for generating effective hi-
erarchical BoW dictionaries dynamically, using an approximate clustering scheme, is proposed. Unlike
contemporary BoW schemes which learn dictionaries dynamically, this scheme is proved to achieve the best
possible complexity for such a scheme.
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In Chapter 4, the localisation accuracy and repeatability of leading contemporary feature detectors is com-
pared. A theoretical limit on the accuracy of these detectors is derived, and several detectors are shown
to be close to achieving this limit. This localisation accuracy is shown to be important for improving the
performance of feature descriptors, and in Chapter 6, I show that localisation accuracy is important for
minimising the time required to compute relative camera poses from correspondences contaminated with
many gross outliers.

In Chapter 7, two improved sampling strategies for RANSAC are developed, BaySAC and SimSAC. These
new strategies both combine prior estimates of the probabilities of data points being inliers, with information
gained by trying to fit models to these data points and failing. Both methods outperform previous sampling
strategies, and are shown to both make effective use of low-quality correspondences between sets of similar-
looking feature matches, and to reduce the time required to compute sequences of relative camera poses.

In Chapter 9, a novel solution to the problem of scale drift in single camera SLAM is proposed: classes of
objects, and their size distributions, are learnt as the robot explores. Subsequent measurements of the size
of these objects allow the robot’s speed to be estimated accurately.

Finally, in Chapter 10, the combination of robust techniques developed to enable BoWSLAM to compute
real-time position estimates in visually challenging environments are applied to the related problem of image
mosaicing. These techniques, together with a novel motion model used to estimate the probability of wide-
baseline correspondences being inliers, given previous camera motion, enable high resolution frames to be
registered and rendered into a seamless video mosaic in real-time.
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Chapter 2

Sensors for mobile robot navigation

Abstract

This chapter provides an overview of potentially-autonomous mobile robot platforms, and the
sensors with which they are equipped. Understanding the characteristics and limitations of these
sensors is necessary for the design of SLAM systems. As BoWSLAM uses a single digital camera
as a navigation sensor, this sensor is discussed in detail.

2.1 Introduction

A wide range of robot platforms have been proposed or constructed, and these robots have been equipped
with many different sensors. Understanding these robots’ motion, their sensors, and the environments in
which they operate is necessary to design robust SLAM systems, or to adapt existing positioning techniques
to different sensors.

This chapter gives an overview of these robots and the sensors with which they are equipped, and is organised
as follows. Firstly, the following section describes a range of robot platforms on which SLAM would be useful.
Secondly, Section 2.3 describes the sensors with which these robots are equipped, and their characteristics
and limitations. BoWSLAM uses only a single camera, so the properties of digital cameras are discussed in
detail.

2.2 Mobile robots

Mobile robots come in a huge variety of forms depending on their intended environment and application.
While most of these robots do not have the ability to navigate autonomously, improvements to the reliability
of SLAM schemes will enable their successors to autonomously operate in a priori unknown environments.
This section describes some of the platforms where robust positioning and autonomous operation will enable
useful applications.

For indoors applications, many ground-based robots have been built, including many ‘humanoid’ robots
which stand upright with a small footprint in order to access the same places as humans; these may be
tracked, wheeled or walking. Indoor flying robots have also been built, including quadrotors (Figure 2.1;
Hoffman et al., 2007) and ‘Micro Air Vehicles’ (MAVs). MAVs weigh as little as eight grams (Klaptocz and
Nicoud, 2009) and are often inspired by flying insects. Characteristics of these indoor flying robots include
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their small payloads and complex, often unstable dynamics (Andert and Adolf, 2009). Other biologically-
inspired compact mobile robots have designs inspired by snakes and spiders (Figure 2.2); these will potentially
enable robots to access environments out of reach of humans.

Robots are are employed in a wide range of outdoor environments, these include many land-based robots, of-
ten based on all-terrain wheeled or tracked vehicles, but also including tree-climbing robots for environmental
monitoring (Elfes et al., 2008), and jumping robots, which can jump obstacles in order to traverse rugged ter-
rain (Kovac et al., 2008). At sea, many different autonomous underwater vehicles (AUVs; Johnson-Roberson
et al., 2010; Barkby et al., 2009) have been deployed; these are often submarine-like, but which include more
exotic designs such as an octopus-based robot (Laschi et al., 2009). Many unmanned aerial vehicles (UAVs;
Figure 2.1) have also been flown, including airships (Hygounenc et al., 2004; Elfes et al., 2008) and unmanned
planes (Bryson and Sukkarieh, 2007). While most of these robots are still in the proof-of-concept stage, some
have operated for longer periods, including the highly successful Mars rovers (Maimone et al., 2007), wheeled
remote-control robots which have operated for several years with only occasional directions from earth; and
the Nomad robot which autonomously searched Antarctic ice for meteors for 16 hours (Apostolopoulos et al.,
2000).

Figure 2.1: UAVs under development at the Geospatial Research Centre, University of Canterbury, for which
positioning is useful include this quadrotor (photo by John Stowers), and this remote-controlled fixed-wing
UAV designed for the Antarctic, images from which are used in Chapter 10 (from Barnsdale, 2010).

When positioning a robot, its environment, dynamics and kinetics can provide many useful constraints on
its possible motion. The simplest case of such a constraint applies to wheeled or walking robots operating on
a locally planar surface, such as indoors, or on roads for example. These robots can often be assumed to be
upright and operating on a plane (Bosse and Zlot, 2008). This combination of 2D position and 1D orientation
(heading direction) gives simple three degrees-of-freedom (DOF) motion, whereas for a robot which can move
in 3D, and which can roll, pitch and yaw, such as an AUV, the robot’s pose has 6 DOF; a 3D position and a 3D
orientation. Other useful constraints come from wheeled robots’ maximum speed and turning characteristics
(for example their minimum turning circle), or from constraints on the accelerations needed to maintain
certain orientations (for example a bicycle can only lean sideways when cornering; Scaramuzza et al., 2009).

Very often a robot’s motion can be modelled, so that its future position can be estimated from its previous
motion. “Constant velocity” motion models are often applied, where the velocity at a later time is assumed
to be distributed about the current velocity (Davison, 2003). A constant velocity motion model might
assume that the robot’s acceleration between two time steps is normally distributed with mean zero, a good
assumption when momentum dominates other forces. For very erratic motion, constant position motion
models are occasionally used (Chekhlov et al., 2006); in this case only the current position (rather than the
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Figure 2.2: This walking robot inspired by a spider is under development by Qing Ou at the University of
Canterbury.

current velocity) is used to predict the distribution of future positions. For situations where the robot is
constrained to a small environment (such as a room) a decaying-velocity model might be appropriate (Klein
and Murray, 2007). Constant or zero angular velocity can also be modeled.

While the smallest MAVs may only have the very limited amount of processing power needed to stay airborne
(Klaptocz and Nicoud, 2009), most other robots are capable of carrying portable computers such as modern
mobile phones or tablet PCs, which are capable of real-time image processing (Wagner et al., 2008). Larger
robots can power and carry powerful computers such as the blade servers carried by DARPA-Challenge
autonomous vehicles (Leonard et al., 2008).

2.3 Robot sensors

To carry out many useful tasks, these robots need to be able to position themselves. Positioning is essential
for robots working out of range of human operators, such as AUVs, so that the robot does not get lost forever.
In this section we review the range of different sensors with which robots are equipped, the measurements
these sensors can make, and how these measurements allow positioning or localisation.

These measurements can be divided into the following three categories. Firstly, IMUs, and the robot’s control
input and odometry, measure the robot’s motion without making any measurements of its environment.
These sensors are described in Section 2.3.1. Secondly, global positioning sensors such as GPS provide
absolute measurements of a robot’s position, these are described in Section 2.3.2. Thirdly, sensors such as
cameras and laser scanners make measurements of the robot’s environment which may be used for incremental
positioning, for mapping, and for localising the robot in its map. These are described in Section 2.3.3.

2.3.1 Measurements of robot motion

Odometry and control inputs

To some extent, most robots can position themselves over short distances by accumulating the expected
effects of their control inputs, for example a wheeled robot can estimate how far it will move for a given
control input, or can use a wheel encoder to measure how far its wheels have rolled. Control inputs are not
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enough on their own, however predictable the robot’s motion is, as eventually small errors will accumulate
and render these position estimates useless. In practice, control inputs and odometry are often unreliable
and are prone to gross errors. For example, UAVs will move in the wind or in draughts, and AUVs are
subject to movement from waves and currents (Siegwart and Nourbakhsh, 2004). Indoor robots may be
picked up and moved, or may fall over, or may experience unobservable motion (for example from riding in
a lift; Mei et al., 2009). Walking robots’ actual motion can vary massively with the terrain being traversed
(Raibert et al., 2008) and wheeled robots often suffer from skidding and wheel-slip (Maimone et al., 2007).
Any navigation scheme using control inputs or odometry measurements for navigation must be able to cope
with these gross errors.

Inertial measurement units

Inertial measurement units, or IMUs, measure a robot’s acceleration. Acceleration is usually measured in 3D
with three accelerometers, and changes in orientation are also measured (often by measuring the difference
in accelerations measured by two parallel accelerometers). Measured accelerations are integrated twice to
give firstly the robot’s velocity, and secondly the robot’s position, giving measurements of full 6 DOF motion.
As IMUs are passive and make no measurements of their environment, they can be used in any environment,
and the errors in positioning can usually be assumed to be free of gross outliers.

A significant problem with positioning from IMU measurements however is that a single small error in a
measurement from an accelerometer will introduce errors to all subsequent velocity estimates when integrated;
hence many small errors in acceleration integrated twice give errors in position that grow quadratically with
time. Even though errors in acceleration may be very small, these errors in pose will still accumulate. The
accumulated errors are known as “drift”, typical low-cost IMUs can only be used unaided for a few seconds
without accumulating substantial drift, and “navigation grade” IMUs costing thousands of dollars will still
drift within minutes or hours (Hide, 2003). For this reason IMUs must normally be used in conjunction with
other sensors, or odometry input, so that this drift can be corrected.

While IMUs do not measure their environment, the accelerations they measure can be used to infer additional
information by using knowledge of the motion of the platform on which they are mounted. One example
is a foot-mounted IMU (Foxlin, 2005, Figures 2.3 and 2.4): the acceleration followed by deceleration of a
stride is easily detected, and the IMU can be assumed to be stationary between strides, allowing a ‘zero-
velocity update’ to be used to correct accumulated drift. An IMU can even be used to provide location cues,
for example by detecting the characteristic motions associated with getting into a car or unlocking a door
(Peddemors et al., 2009). As IMUs are sensitive to the direction of gravity, this measurement can be used
to correct certain errors in orientation from other sensors. One case when IMU-only navigation is possible
is when the assumption that the paths most likely to be visited are those that were visited previously can
be used (Robertson et al., 2007).

2.3.2 Absolute position sensors

Ideally a sensor will give an absolute position anywhere in the robot’s environment, as this will allow maps to
be built which are free of gross errors or large scale distortions. Global Navigation Satellite Systems (GNSS),
such as GPS, provide absolute position estimates in many outdoor environments. GPS is unavailable or
unreliable in many environments where robots may work however, including indoor environments, in ‘urban
canyons’, in mountainous or densely forested areas, near the poles, underwater, underground and on other
planets. Even when GPS is available, measurements may only be accurate to a few tens of metres (as seen in
Figure 8.24). Often mapping and localisation are still useful to robots which use GPS, in order to improve
the quality of maps (Barkby et al., 2009), or to obtain more accurate position estimates (Apostolopoulos
et al., 2000; Tillett, 1991).

Another absolute position sensor that can provide orientation information is a compass. Compasses (mag-
netometers) give noisy and biased measurements however (Barkby et al., 2009), and are subject to local
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Figure 2.3: The acceleration of a foot-mounted IMU is briefly zero when the foot is on the ground between
steps. This event is easily detectable, allowing a zero-velocity update to be used to correct the IMU’s drift
(from Hide et al., 2009).

magnetic field variations (including those caused by the robot’s electronics). This is particularly a problem
indoors, where large magnetic field variations arise from electrical appliances and steel objects. This variable
field is not unusable as a positioning sensor however; Haverinen and Kemppainen (2009) measure the 3D
magnetic field variation around a building, then use the map of variations to localise a person equipped with
a magnetometer.

2.3.3 Environmental sensors

Sonar scanners, laser scanners, cameras, and radio receivers are commonly mounted on robots to measure
properties of the robot’s environment, enabling many mobile robot functions such as local path planning
and obstacle avoidance, and the identification of objects with which to interact (for example people or other
robots). These sensors can be used for positioning by measuring the change in the positions of features in
the world, relative to the robot, when the robot moves. The performance of these sensors varies depending
on environmental conditions, and robust methods must normally be used that can cope with the objects
that are being sensed moving or changing with time.

Laser scanners are popular sensors for navigation of wheeled robots in planar environments (Apostolopoulos
et al., 2000; Bosse and Zlot, 2008). One laser range measurement gives the depth of the first solid object
encountered in a particular direction. A laser scanner scans a laser range finder around a 1D range of angles,
giving a planar set of 3D points. As wheeled indoor robots move on a plane, and many indoor features have
vertical edges (e.g. walls, doors, table legs) then a pair of consecutive scans will show many of the same
points. These scans can be used to build a 2D map of local features to which future scans can be aligned,
hence giving the position of the robot. For outdoor applications, robust scan-alignment, which can cope
with the robot moving on an uneven surface, can still provide reliable position estimates (Bosse and Roberts,
2007).

By continually moving (spinning or sweeping) a laser scanner, 3D scans can be obtained; these can then
be used for 3D mapping (Albrecht et al., 2006; Cole and Newman, 2006). Laser scanners have several
problems however, including noisy and unusable results in environments where glass objects are common,
and the compromise between choosing a laser that is eye-safe (i.e. is safe to use around humans), but is
powerful enough to measure ranges to more distant features. Some laser scanners can also be confused by
sunlight (Folkesson and Christensen, 2007), and by lasers on other robots, and are often heavy and expensive
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Figure 2.4: One potential use for SLAM is as a pedestrian navigation aid. This vision-aided pedestrian
navigation system combines computer vision with measurements from a IMU, and from GPS when available.
A Sony Handycam DCR-SR47 is used to collect images, and a low-cost Microstrain 3DM-GX1 IMU is
mounted to the pedestrian’s foot (from Hide et al., 2009).

(Kwok and Dissanayake, 2003); a widely-used “light” and “low power” SICK laser scanner has typical power
requirements of 8W and weighs 1kg (SICK LD-MRS-400001 laser scanner technical data, 2010); so is not a
practical sensor for many small robots.

Sonar scanners provide a lower-cost alternative to laser scanners, but typically have lower angular resolution.
They are a popular sensor for slow-moving underwater robots, having a longer range underwater than, for
example, cameras. Barkby et al. (2009) match sonar scans from an AUV to a coarse, two-metre resolution
depth map, allowing both the robot’s odometry estimate and the depth map to be to be improved.

Sonar and laser scanners both work by emitting signals and detecting their reflection. For applications where
the robot does not want to be easily detectable, or where these signals could interfere with other equipment,
a passive approach is desirable. One passive option is to detect electromagnetic ‘signals of opportunity’
(Fletcher, 2009), such as the radiation emitted by electronic appliances, or to use radio signals intended
for other communication applications. Evennou and Marx (2006) use varying Wi-Fi signal strengths to
help position a robot indoors. A similar passive positioning approach which can provide absolute position
estimates uses ‘time difference of arrival’ techniques normally used for GPS positioning to compute positions
from time-synchronised communications signals, for example DAB digital radio signals (Palmer et al., 2009).
The use of such measurements is still restricted to small scale proof-of-concept demonstrations such as
these. In addition, electromagnetic radiation sensors are limited to environments where signals of the correct
frequency are present, and systems using these sensors must be robust to electromagnetic noise from other
sources, and changing signals as equipment is switched on or off.

Other properties of the environment that can be measured by robots include sound and temperature, and
these measurements could potentially be used to aid robot positioning. These measurements might be used
for example to infer that wheel-slip is more likely when the temperature is below freezing, and that position
estimates computed in noisy environments containing dynamic objects such as people and vehicles are less
reliable than position estimates computed when everything is stationary and quiet.

One sensor that is considerably more powerful as a localisation sensor is a digital camera. Cameras are
passive, relatively low-cost and low-power sensors which capture rich, distinctive information about the
robot’s environment. There is sufficient distinctive information in a photograph to regularly and reliably
localise a camera on a car travelling for hundreds of kilometres of roads (Cummins and Newman, 2008a),
and often images contain enough information to identify where in the world a photograph was taken (Hays
and Efros, 2008).

Images can also provide information about the 3D structure of the environment being viewed, and hence can
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Figure 2.5: Contour HD wearable camera. This rugged helmet-mounted camera with a 135 degree FOV
weighs 116g, currently costs around US$250, and has a battery/recording life of about 2 hours. Images from
this camera are used to test BoWSLAM, as described in Chapter 8.

be used to reconstruct the path a camera has taken. The location of a feature in an image gives its bearing;
by moving the camera and measuring its bearing from a different location the position of the corresponding
object in the world may be triangulated. Alternatively, a second camera may be attached to provide stereo
vision, allowing the structure of the scene to be reconstructed even when the camera does not move. Stereo
cameras also make 3D reconstruction simpler and more reliable, as the location of each feature in one image
constrains its location in the other image. As either a single camera, or a stereo camera moves thorough the
world, the change in the positions of observed objects relative to the camera gives the camera’s trajectory
through the world.

Images from a single camera alone cannot measure the scale of the world: for example the images do not
indicate whether the camera is moving slowly past nearby objects, or rapidly past far-away objects, and hence
the absolute speed of a single camera cannot be determined without additional information. This additional
information may be knowledge of the size of particular objects in the environment (Davison, 2003), or input
from additional sensors. Without such additional information the scale of the world, or speed of the camera,
can only be determined up to an unknown scale factor. In addition, errors in computing the relative scale
of objects in the environment as the camera moves through it will accumulate over time, a problem known
as ‘scale drift’.

Scale drift is not usually a problem when stereo cameras are used, as the known baseline (the distance
between the cameras) allows absolute distances to objects viewed to be measured. Stereo cameras are not
suitable for all platforms however; they can only provide useful depth information if their baseline length
is a sufficient fraction of the distance to points in the world. In addition there are additional cost, space,
weight and power requirements in carrying an additional camera.

To use a camera as a navigation sensor there must be sufficient light (which may come from an attached
light source), the scenes viewed must contain sufficient visual information (images of completely blank walls,
or showing entirely sky, provide limited information), and there must be overlap between pairs of frames.
To increase the chances of viewing the more detailed parts of a scene, and to increase the amount of overlap
between multiple images of a location, a wide field-of-view (FOV) is often desirable, although at the cost of
either decreased resolution or increased image size. The widest FOV images come from omnidirectional or
panoramic cameras, which use lenses, mirrors, or a combination of several cameras to view a large area of
their surroundings (Bur et al., 2006; Lemaire and Lacroix, 2007). These cameras can add to the cost and
processing complexity of a visual navigation sensor however. An alternative way to increase the proportion
of consecutive frames that will overlap is to capture images at a high framerate, however this reduces the
amount of processing time available per-frame.
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Compact machine vision cameras are available which are small enough and have low enough power con-
sumption for most robot platforms, for example the Point Grey Chameleon camera (Point Grey Chamelion
Datasheet, 2010), weighing 37g and requiring less than 2W of power. Images from the low-cost wearable
camera shown in Figure 2.5 are used in Chapter 8 to test BoWSLAM.

Cameras are also versatile sensors, which can be used in a wide range of situations including many indoor
(Bur et al., 2006), outdoor (Nistér et al., 2006) and underwater (Johnson-Roberson et al., 2010) environments,
however challenges exist where effects such as dust or rain degrade images (Peynot et al., 2009).

The potential of computer vision to be used for navigation is illustrated by the way animals have evolved
to use vision. Many animals use vision for positioning and navigation (in conjunction with many other
senses); for humans this is stereo colour vision (Ramachandran, 2002c), however many animals, such as
horses (Equine vision; Wikipedia, 2010), and many fish, have eyes positioned on opposite sides of the head
and their field-of-view has little or no overlap, leaving them with essentially panoramic monocular vision.
Many animals have poor colour vision, and humans who are colour-blind, or blind in one eye can still
negotiate the world with similar ability to fully sighted people (Ramachandran, 2002a). In addition to stereo
vision, the human brain uses optical flow, and moving occlusion boundaries, to infer the 3D structure of the
world from the motion of the head (Ramachandran, 2002b).

Some animals have evolved to use colour bands outside the range visible to humans (bees can sense ultraviolet
light, and some snakes can use infra-red radiation to sense prey). These bands could potentially be useful
for navigation, especially in the dark (Fehlman and Hinders, 2010, use a robot-mounted infra-red camera to
classify obstacles at night), however many human environments are illuminated with artificial lights designed
to match the human visible range, and many parts of our environment (signs, handles, road markings) are
designed to be visible in this range.

Time-of-flight cameras are a recent development allowing the depth of each pixel to be measured. A source
of light or infra-red radiation is used to illuminate the scene, then the phase of the reflected light is used to
infer the depth. Unlike stereo cameras, depths can be measured across featureless areas of images, providing
a complete depth map without interpolation. Time-of-flight cameras do not always work in sunlight however,
and exhibit large errors in depths with “complex” characteristics, but even so have successfully been used
as a robot positioning sensor (May et al., 2009).

2.4 Summary of robots and sensors

In summary, there are a vast range of different potential robotic platforms, with a range of different dynamics
and kinetics, and which operate in a wide range of environments. For some of these platforms, for example
wheeled robots, information about the robot’s control inputs and dynamics will provide useful information
about the robot’s motion, however even in this case these measurements are liable to contain gross errors
(from wheel-slip or unobservable motion). Many platforms, such as robots which fly or jump, or wearable
computers (Figure 2.5), can move unpredictably or erratically; this limits the assumptions which can be
made about their motion.

Of the many different sensors attached to these robots, cameras are possibly the most versatile, as they can
be used for both incremental positioning and for large scale localisation, and hence we believe camera is the
only low-cost sensor that has the potential to be used on its own for long-term robot positioning in a wide
range of environments.

In practice a combination of sensors, with complementary strengths, would be a more reliable approach to
robot positioning. Many positioning algorithms (described in the following chapter) are designed for multiple
sensor inputs, and when multiple measurements are available, outliers are considerably easier to identify, as
these will normally be incompatible with other measurements. However, additional sensors add to the cost,
weight, and processing and power requirements of the system, and for a few applications (lightweight MAVs,
jumping robots with high accelerations; Kovac et al., 2008), a camera may be the only feasible option. In
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this thesis I develop BoWSLAM, a system allowing positioning using a single camera alone, demonstrating
the strength of a camera as a navigation sensor, however techniques developed to enable navigation using
a single camera are also applicable to systems integrating cameras and other sensor inputs, or to robust
navigation systems that do not use cameras.
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Chapter 3

Positioning and SLAM using a single

camera

Abstract

This chapter describes the many solutions which have been proposed for the SLAM problem,
and identifies those solutions which are appropriate for large scale navigation using a single cam-
era. Contemporary SLAM algorithms based on Kalman filters and particle filters are described
and analysed, then more recent algorithms based on the optimisation of pose graphs are re-
viewed. All of these algorithms have been applied to Visual SLAM: these schemes are described
and evaluated. The most successful scalable stereo camera SLAM schemes all use some form
of incremental bundle adjustment, or multi-view pose refinement, on a subset of recent frames,
then compute globally accurate maps by optimising the graph of transformations between local
coordinate frames. This approach is also likely to be successful for large scale single camera
SLAM.

3.1 Introduction

The ability for a mobile robot to position itself in a previously unknown environment for extended periods
is considered essential for it to operate autonomously (a ‘core competency’ according to Thrun et al., 2005),
however position estimates obtained by accumulating many small relative position measurements (dead-
reckoning) from sensors such as vision, wheel odometry, or laser scanners will accumulate errors (drift) over
time, eventually rendering them useless. For long term positioning using these sensors, the environment
being explored must also be mapped, so that when the robot re-visits mapped areas it can correct errors
in both its position estimate and in the map. This combination of positioning and mapping is known as
Simultaneous Localisation and Mapping, or SLAM (Dissanayake et al., 2001). The map produced is not only
useful for positioning, but may also be useful for path planning, accomplishing objectives, and mapping may
even be the robot’s ultimate task.

SLAM is a challenging problem to solve however, as errors in a robot’s position will introduce errors to the
map it is making, and similarly, errors in a robot’s map will lead to errors in its position estimate (Smith
et al., 1990). Modeling the correlation between these errors is key to a successful SLAM algorithm, and
numerous solutions have been proposed (several of the most popular are reviewed by Bailey and Durrant-
Whyte, 2006; Durrant-Whyte and Bailey, 2006). This chapter presents an analysis of the SLAM problem,
and a review of different approaches to solving it, and is organised as follows: the following section analyses
the SLAM problem and describes some leading contemporary systems. In Section 3.3, a selection of the most
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successful schemes for visual SLAM and visual odometry are described and analysed. Finally, Section 3.4
discusses these proposed solutions and identifies the techniques which are most appropriate for large scale
robust single camera SLAM.

3.2 The SLAM problem and contemporary solutions

As a mobile robot moves through the world its sensors collect information about its environment (‘mea-
surements’). In addition, control inputs or odometry may also be available, together with knowledge of the
robot’s dynamics, for example the maximum speed and minimum turning circle for a wheeled robot. Prior
knowledge of the robot’s environment may also be useful, for example knowledge that the robot is exploring
a building with horizontal floors and vertical walls and furniture. In addition, absolute position estimates
may be available, for example from GPS.

These measurements, odometry inputs, and absolute position estimates all have associated uncertainties,
which will introduce uncertainty into any map of the environment that is constructed from them. The goal
of SLAM is to build a map from these measurements that is good enough to be useful despite the errors, and
preferably errors in the map should be reduced as more measurements become available. The map generated
will be a stochastic map (Smith et al., 1990), where each position has an associated uncertainty.

Most existing SLAM algorithms assume that measurement and odometry errors are approximately normally
distributed, and hence that gross errors either do not occur, or can be filtered out before being used. These
algorithms aim to find a map consisting of the positions of landmarks in the world, and the position, or pose
history, of the robot with respect to these landmarks (Figure 3.1). Ideally the map estimated would be a
maximum likelihood estimate (MLE) of the landmark positions, given the measurements. This estimation is
challenging however; finding the exact ML solution involves a nonlinear optimisation, due to the nonlinear
relationship between errors in the robot’s orientation. Typical gradient-descent algorithms which converge
to the exact solution, such as Levenberg Marquardt (Appendix A.2), have complexity cubic in the size of
the mapped area, and are too expensive to use to estimate large maps (Olson et al., 2006). Instead, SLAM
algorithms aim to compute approximate solutions, which can be updated incrementally as the robot explores.

In addition to computational complexity, two particular challenges for SLAM are data association and loop
closure. Data association is the matching of measurements of a landmark to subsequent measurements of
the same landmark: as landmarks may be matched incorrectly, measurements of a landmark may include
gross outliers. Most SLAM algorithms assume Gaussian error distributions, with no gross outliers, and
implementations go to considerable lengths to detect and remove outlier measurements. A second challenge
for SLAM is loop closure (discussed in detail in Chapter 5); this involves detecting when a previously-visited
location is re-visited. Detecting loop closure events allows accumulated errors in position and map estimates
to be corrected, hence enabling accurate long-term positioning.

There are two basic formulations to the SLAM problem. Firstly, the “Classic SLAM” problem, where an
MLE for the map and current robot pose are estimated. This problem is often solved using an Extended
Kalman Filter (EKF; reviewed in Section 3.2.2). The second formulation is based on the observation that
estimated positions of landmarks are independent, given the robot’s trajectory, and hence only the most likely
robot trajectory given the measurements must be measured. Estimated landmark positions are then given
relative to this trajectory. This second formulation is used by the particle-filter based FastSLAM algorithm
(reviewed in Section 3.2.3), and pose graph optimisation-based approaches (reviewed in Section 3.2.5).

The following sections describe the variety of optimisation algorithms which have been used to solve the
SLAM problem, and their strengths and limitations. The algorithms, their properties, and some of the more
successful applications are described first. The adaptations of these algorithms to vision-only SLAM are
reviewed in Section 3.3.
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Figure 3.1: A robot moves through a previously unknown environment while observing landmarks (marked
with circles). The sequence of robot poses is marked with triangles. Constraints between robot poses (from
odometry), and between robot poses and landmark positions (from measurements) are shown by arrows and
dashed lines respectively. SLAM consists of an optimisation to estimate the positions of landmarks, and the
robot’s position or trajectory, which is most likely given these constraints. Optimising this network by (for
example) Levenberg-Marquardt is costly; many of the more-efficient, and often incremental solutions which
have been proposed are described in this chapter.

3.2.1 Occupancy grids

One of the earliest models of a robot’s environment involves dividing the world into a regular grid of cells
(Moravec, 1979); this representation is known as an occupancy grid. As a robot explores, the contents of
the cell it occupies, and the contents of surrounding cells are estimated. Usually the cells are categorised
as containing obstacles or not containing obstacles, or the probability that the cell contains an obstacle
is estimated. A major limitation of this representation however is the difficulty of correcting accumulated
errors when subsequent visits are made to a location (Thrun et al., 2005).

One occupancy grid-based SLAM system is RatSLAM (Milford et al., 2004), where a 3D array of cells
represent possible robot positions in 2D space, together with the robot’s orientation. RatSLAM is inspired
in part by the way a rat’s brain is believed to model its environment, with individual cells corresponding to
different locations and poses. This representation allows a robot equipped with multiple sensors including
a camera and laser scanner, to be positioned in a small artificially-constructed environment, however the
map generated is not consistent, with single locations mapped multiple times in different cells (Milford et al.,
2006).

Robertson et al. (2007) describe a occupancy grid-based SLAM scheme for pedestrian navigation using an
IMU. In order to ensure a consistent map, multiple maps are maintained, with new maps generated when
the pose of the pedestrian could fall into one of multiple cells. A good global map estimate is given by
the most likely of these maps, while the least likely maps are discarded. This approach has high memory
requirements and complexity in the size of the mapped environment however, as the number of potential
maps can double every time there is uncertainty in which of two cells a robot occupies, As a result, real-time
operation is limited to very small environments, such as a single room.

Despite these problems with occupancy grids, they do have the potential to be used locally as part of
larger-scale SLAM schemes (e.g. Thrun and Bucken, 1996), and are also useful for local path-planning and
obstacle-avoidance (Andert and Adolf, 2009). A grid-based approach is also suitable when a globally accurate
prior map is available, and SLAM is being used for local refinements, and to fill-in unmapped regions (Barkby
et al., 2009), as global errors should not accumulate in this situation, however in this scheme the resolution
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of the grid limits the accuracy to which the environment can be mapped.

3.2.2 Extended Kalman-filter SLAM

One of the most popular contemporary solutions to the SLAM problem is to use an EKF (Dissanayake et al.,
2000) to estimate the pose of the robot together with the positions of landmarks in a map (Figure 3.2(a)).
An EKF combines multiple measurements with a model of the robot’s dynamics, to incrementally update the
robot’s estimate of both its position and map (Figure 3.3). Measurement errors are assumed to be Gaussian,
and the robot’s motion, and response to control inputs, are assumed to be locally linear with Gaussian
measurement noise; if these measurements and motion were truly linear then the pose and map estimate
obtained would be an MLE, although errors in orientation will always introduce nonlinear dependencies
between measurements.

The EKF maintains a state-vector, which includes its best estimate of the current robot pose and motion,
and (usually) the estimated positions of landmarks which have been observed. A matrix of covariances
between the estimates in this vector is also maintained. These encode the correlation between the current
pose and landmark estimates. The estimated variance of landmark position estimates falls monotonically as
more measurements are made of landmarks, and Dissanayake et al. (2001) proved that landmark position
estimates also move monotonically towards their true position as more observations are made (assuming the
linearisation assumption holds, and that data association is always successful). This simple model of uncer-
tainty, and the ease with which multiple sensor measurements and motion models can be incorporated, make
EKFs a popular choice for SLAM, however the drawback is that EKF updates have complexity quadratic
in the number of landmarks mapped, which soon limits the size of environments which can be mapped in
real-time.

Dissanayake et al. (2001) demonstrate EKF-SLAM with a car equipped with an accurate millimetre-wave
radar. The radar measures the range and bearing of nine radar reflectors and a few natural landmarks. As
the car drives in loops, these landmarks, and the car’s position and orientation, are estimated in an EKF.
The estimated errors in these landmark positions fall as they are observed multiple times, and the positions
converge towards their true position. A similar scheme by Nieto et al. (2006) positions a car equipped with
odometry and a laser scanner as it drives loops around a carpark; an innovation introduced in this scheme
is that point-landmarks are not necessary, instead the positions of scans form landmarks, with additional
measurements of these landmarks calculated by aligning later overlapping scans.

In practice, some sensors have significant latency, and simultaneous measurements of a robot’s environment
from different sensors arrive at different times. In this case ‘delayed state’ Kalman filters can be used (Bailey
and Durrant-Whyte, 2006). Delayed state Kalman filters also allow uncertain measurements to be kept out
of the Kalman filter the first few times they are observed. This allows more measurements to be made,
ensuring that observations (such as landmark positions reconstructed from multiple bearing measurements)
have approximately Gaussian uncertainty by the time they are incorporated into the Kalman filter, and
also allows potential outliers (for example moving landmarks) to be discarded before they can contaminate
the map. A delayed state Kalman filter is used to incorporate measurements from a laser scanner making
sweeping movements by Cole and Newman (2006), as measurements are only available once the laser scanner
has completed its sweep. A detailed and accurate map from a single loop around a building is produced.

Delayed-state EKFs are also useful for incorporating measurements from computer vision. Bryson and
Sukkarieh (2007) combine reliable and approximately-Gaussian measurements from an IMU and GPS, with
the occasional landmark observation from a camera, in order to position a UAV. Each of the landmarks can
be reconstructed more accurately as more observations are made over a sequence of frames. The position of
each landmark is incorporated into the EKF only when sufficient measurements have been made to ensure
that the errors in its position are approximately Gaussian; subsequent observations can be used to further
refine its position.

A closely-related estimation algorithm, which is often computationally less expensive, is the Sparse Extended
Information Filter (SEIF; Thrun et al., 2004). A SEIF maintains the information matrix (the inverse of the
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(a) Classic EKF-SLAM updates all landmark positions and
current pose.

(b) Various optimisations are possible where only the positions of
nearby landmarks are updated most of the time.

Figure 3.2: (a) The classic EKF-SLAM approach refines the current robot pose, and landmark positions
simultaneously. As consecutive poses are highly correlated, eliminating previous poses leaves correlations
between all landmark positions and the current pose (marked with dashed lines). These correlations are
represented by the EKF’s covariance matrix. (b) In practice, most updates affect only the positions of
nearby landmarks. For this situation many more efficient SLAM algorithms have been proposed (Guivant,
2002), which simplify EKF-SLAM by updating only the poses of nearby landmarks, however on loop closure
many more landmark positions must be updated.
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At each time step:
Predict robot position and position uncertainty using motion model.

For each measurement:
Update estimated map, and estimated position relative to map.

Figure 3.3: Classic incremental solution to the SLAM problem, as solved by EKF-SLAM.

covariance matrix) rather than the covariance matrix, and this can be maintained in constant time when not
re-visiting environments. Complexity is still quadratic when re-visiting regions however.

An alternative optimisation to speed up EKF-SLAM is the Compressed EKF (Guivant, 2002, Figure 3.2(b)).
This limits the complexity of EKF updates by only updating the positions of landmarks which are spatially
nearby on each time step, rather than the positions of all landmarks. Updates to the positions of remaining
landmarks are stored and applied later. This later update, which is essential for incorporating loop closure
information, has quadratic complexity however. Guivant (2002) demonstrates Compressed EKF SLAM by
accurately positioning a vehicle from data collected when it was travelling on a 3km looping path amongst
trees, however the cost of full updates are sufficient that mapping is not real-time (Nieto et al., 2003).

In summary, EKF-SLAM works well on a reasonably small scale, however it has two major limitations when
applied on larger scales. Firstly, any gross error in the input data, for example incorrectly matching features,
can corrupt the map and cause positioning to fail (Thrun, 2002; Chekhlov et al., 2006; Bailey and Durrant-
Whyte, 2006; Folkesson and Christensen, 2007), and secondly, that the complexity of updates is at best
quadratic in the number of landmarks observed, limiting the size of environments which can be explored.
The first problem can be partly addressed by additional filtering of input data, for example using a delayed
state EKF, however this will not always be sufficient, particularly when measuring landmarks which are
liable to move. The computational costs can be reduced by various optimisations, for example by reducing
the number of landmark positions which are estimated by combining landmarks (for example into planar
features, Martnez-Carranza and Calway, 2009), although costs will still grow quadratically. An additional
more minor problem in applying EKF-SLAM to large environments is that artefacts caused by linearising
errors in orientation can distort global maps (Olson et al., 2006; Folkesson and Christensen, 2007). For these
reasons, EKF-SLAM is best used on a small scale in circumstances where measurements are approximately
Gaussian (for example when using an IMU), or where any outliers can be reliably detected. For larger-scale
navigation the methods described in Section 3.2.5 can be used to fuse many small maps into a larger map.

3.2.3 Particle-filter SLAM

An alternative optimisation algorithm suitable for SLAM is a particle filter. Particle filters have long been
used for the problem of robot localisation in a known map (‘Monte-Carlo localization’; Dellaert et al., 1999).
A set of particles is generated, each representing a possible robot position. Measurements are made of local
landmarks, then each particle is scored according to its compatibility with these measurements (for example
the likelihood of the measurements if the particle is correct), then the top scoring particle(s) are chosen as
the best estimate of the robot’s position. A new set of particles is generated by applying the robot motion
model to these particles, then sampling from the weighted distribution of possible robot positions. Unlike
localisation with Kalman filters, multimodal distributions can be represented, for example when a robot may
have entered one of two neighbouring rooms.

A simple application of a particle filter to the SLAM problem would be to use a set of particles, each
representing a possible state vector (or occupancy grid). This is computationally infeasible however, due to
the number of particles which would be required to represent the state-space (Durrant-Whyte and Bailey,
2006). Instead, Montemerlo et al. (2002) propose FastSLAM (Figure 3.4), a particle filter-framework for
SLAM based on the observation that given the robot pose, landmarks observations are independent. In
FastSLAM, each of M particles represent a particular trajectory, together with the positions of all of the
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Figure 3.4: In FastSLAM each particle represents a possible robot trajectory. The set of particles represents
the distribution of possible trajectories which could have lead to these observations. Landmark positions
are estimated relative to each trajectory. When measurement errors are low, accurate long-term positioning
is possible (Nieto et al., 2003), however when errors are larger (for example when using computer vision;
Eade and Drummond, 2006) ensuring that the particles reflect a reasonable distribution of trajectories is
challenging.

K landmarks observed relative to this trajectory. The position of each of these landmarks is represented
by a 2D (or 3D) Kalman filter, each of these can be updated cheaply every time the landmark is observed.
On each iteration, the motion model is applied to each particle, and each particle is scored based on its
likelihood given the observations, then particles are replaced with new particles distributed about the most
likely particles (‘resampling’). Each particle is resampled efficiently by updating only the position of the robot
relative to observed landmarks; with landmarks stored in a tree this has complexity O(logK), giving each
iteration complexity O(M logK). Remarkably, few particles are needed in many situations, in particularly
when measurement error is low and data association reliable. Like EKF-SLAM, FastSLAM can be proved to
converge to the correct map (even with a single particle) if data associations are known (Montemerlo et al.,
2003).

Two successful implementations of FastSLAM are by Nieto et al. (2003) and Stachniss et al. (2005). Nieto
et al. accurately position a laser scanner-equipped car, driving for over 3km amongst trees (which provide
point-landmarks in 2D). The map generated closely matches ground-truth, and is generated considerably
faster than real-time. FastSLAM is also modified so that when a match between trees is uncertain, both
can be represented with different particles, with the incorrect association being removed later when more
measurements have been made. Stachniss et al. use FastSLAM to accurately position a laser-scanner-
equipped robot indoors, but find that large numbers of particles are needed to avoid particle-depletion
(particle-depletion occurs when too few particles are used to represent the distribution of possible trajectories).
They propose a scheme to actively instruct the robot to close many small loops to solve this problem, however
this indicates that FastSLAM would struggle to maintain a good distribution of trajectories in a larger-scale
environment containing larger loops, or with less accurate sensors.

While FastSLAM uses many 2D or 3D Kalman filters to estimate landmark pose relative to one of the
trajectories, an alternative is to use many particle filters, one for each landmark viewed from each trajectory,
instead (Yuen and MacDonald, 2004). Yang et al. (2008) compare this system to FastSLAM in a small
artificial setup, and it is shown to be slightly less accurate, however its total computational cost is lower, and
the particle filters used to model each landmark’s position could potentially be used to model ambiguous
data associations.

In summary, the leading particle-filter-based SLAM framework, FastSLAM, performs well at mapping en-
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vironments where accurate sensor measurements are available, and can resolve uncertain data associations.
The effects of a gross errors in either odometry or data-association could contaminate all particles however.
Although FastSLAM has lower complexity than EKF-SLAM, computational costs will still grow as the area
explored increases.

3.2.4 Submaps

One solution to allow these methods to scale to larger environments is to use one of these techniques locally,
then to join the local maps together into a larger map. This section describes some of these submap
techniques, and their successful applications. Many of these techniques formulate the global SLAM problem
as a network of transformations between submaps, then optimise this network to compute the relative
positions of all submaps. More applications of submaps are described when visual SLAM is discussed later
in this chapter.

A popular and scalable graph-based formulation is given by the Atlas framework (Bosse et al., 2004). In
this hybrid approach, each node represents a small group of landmarks in their own local coordinate frame
(a ‘submap’) where a conventional SLAM algorithm is used, and each edge represents a transformation
between these coordinate frames. Accurate positions of a node relative to a root node can be reconstructed
efficiently by finding the ‘shortest’ path through the graph, where edges are weighted by a measure of their
transformation’s accuracy.

One of the most successful SLAM schemes to-date (Bosse and Zlot, 2008) maps a trajectory of over 17km
through a dynamic urban environment, using only the circle of measurements from a 360 degree laser scanner.
In each submap, a sequence of recent poses is estimated by an EKF, using odometry measurements from
aligning each scan with recent scans. These local frames are connected via the ATLAS framework. Each
scan is encoded as an orientation-histogram, as described by (Bosse and Roberts, 2007). When loop closure
is likely, this orientation-histogram representation of the scan data allows the map to be searched for a
location matching the current scan. Sufficient loop closure events are detected for a global accurate map to
be generated, however in some regions loop closure events are missed due to the low distinctiveness of laser
scans in some environments. Dynamic objects filling over 50% of the field-of-view would cause the method
to fail, although the global laser-scan loop closure detection scheme proposed by the same authors would
solve this problem (Bosse and Roberts, 2007). A locally-accurate map is built in real-time; this is optimised
to generate a globally-accurate map offline when required.

A similar approach, where a global map is always maintained, is described by Estrada et al. (2005). On a small
scale a conventional SLAM algorithm (EKF-SLAM) is used. When the number of landmarks grows beyond
some limit a new map is started with a new coordinate frame, and the transformation from the previous map
is taken to be the position of the robot in the previous map, with associated covariance. Importantly, mapping
starts afresh, without using landmarks from the previous map, every time a new submap is started. This
ensures that relative positions within maps are independent of relative positions with earlier maps. When
loops are closed, the relative positions of submaps are refined, subject to the constraint that transformations
compose to the identity around cycles. This constrained least-squares optimisation is solved via a potentially
costly quadratic programming algorithm, however in practice this is not too expensive. A building is mapped
by a wheeled robot with a laser scanner travelling on a 735m trajectory, including three large loops. An
accurate global map, free of significant linearisation errors is generated; at worst the update when a loop
is closed takes around one second. False loop closure events are detected from their likelihood given the
estimated relative poses of the ends of the loop.

3.2.5 Pose graph relaxation

Several recent SLAM schemes avoid some of the difficulties in scaling to large environments with entirely
graph-based representations of the map. The SLAM problem consists of constraints (measurements) between
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robot poses and landmarks. These constraints are represented by the edges in a graph. A global map can
then be estimated by optimising this graph to find a trajectory and landmark positions which minimise the
total error in constraints (Thrun and Montemerlo, 2006).

Figure 3.5: GraphSLAM (Thrun and Montemerlo, 2006), simplifies the full global optimisation over land-
marks and poses by eliminating the landmark observations; introducing constraints between poses in the
process. An offline optimisation over poses then generates the ML global map; alternatively a more efficient
pose graph optimisation could be used.

In GraphSLAM (Thrun and Montemerlo, 2006) a graph is built where nodes represent robot and landmark
poses, and edges represent odometry measurements and landmark observations. Each edge corresponds to
a constraint on the relative pose/position of two nodes. The landmarks are now eliminated from this graph,
introducing relative pose constraints between the robot positions from which they were observed (Figure 3.5).
The GraphSLAM framework naturally incorporates loop closure: when a loop is closed, landmarks observed
on the two visits introduce constraints between the corresponding poses. The result of this variable elimina-
tion is a graph of robot poses with many relative pose constraints between pairs of poses. Edges are weighted
by their likelihood, and the constraints they represent are linearised. The graph can now be optimised to find
the set of poses maximising the likelihood of the observations. This linearisation/optimisation is repeated
several times to reduce errors from linearisation; an initial solution close to the ML solution aids convergence,
but even so, the optimisation proposed is costly, with map generation being a slow offline process.

A closely related approach to SLAM is to construct the pose graph directly: when landmarks are observed
which were observed from previous frames, relative pose constraints between these poses are introduced
(Figure 3.6). As with GraphSLAM, when a loop is closed the observations of previously-observed landmarks
introduce constraints between the latest pose and poses from the previous visit. The global map is then
estimated by finding the robot poses minimising the total residual in relative positions. Solving this problem
via global methods such as Levenberg-Marquardt nonlinear optimisation is not computationally feasible, and
linearising the problem and solving via a Kalman filter can lead to significant artefacts from linearisation
(Olson et al., 2006), however several efficient approaches have been proposed.

The most efficient algorithms to perform the global optimisation needed to generate world maps from these
graph-based representations iteratively update positions to reduce local errors, either via a relaxation proce-
dure (Frese et al., 2005), or by stochastic gradient descent (SGD; Olson et al., 2006).

To optimise these maps by relaxation, the constraints are linearised, and a quadratic error function on the
robot pose history is set up, which could be optimised using a linear least-squares approach (with complexity
quadratic in the number of poses at best). As the previous solution is known however, a relaxation procedure
can be used. Each relaxation procedure involves iterating over all robot pose estimates and minimising the
error from each estimate in turn; in a sparse map this has linear complexity in the number of poses. This
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is iterated until convergence, which often requires very few iterations. When loops are closed however, the
number of iterations required is also linear in the number of poses, giving quadratic complexity. Frese et al.
(2005) propose to speed this up using a method based on multi-level relaxation, a technique often used
to solve partial differential equations. A sequence of coarser pose graphs are constructed by subsampling
from the original graph, for example every second pose, every fourth pose, etc. The relaxation procedure is
applied to the sequence of coarser levels in order of increasing coarseness, an exact solution is computed at
the coarsest level (with low cost as this level contains few poses), then the relaxation is applied at each level
from coarse to fine. This ensures the number of iterations is low even when closing loops; Frese et al. (2005)
argue that in real-world environments, where looping is limited, the number of iterations needed is bounded
by a constant, giving the algorithm linear complexity in the number of poses.

Olson et al. (2006) optimise pose graphs using a variation on SGD; like multi-level relaxation this technique
was originally used for solving partial differential equations. Each SGD iteration finds an increasingly accu-
rate pose graph relative to the nonlinear relative pose constraints. This method starts from an approximate
initial solution, selects one constraint (relative pose estimate), calculates the adjustment to the robot poses
needed to reduce the error in this constraint, then applies this adjustment to each robot pose. Instead of
choosing constraints at random, as in the original SGD algorithm, each is considered in turn. This, together
with the structure of the problem (updates usually only affect temporally close/subsequent positions) means
that updates can be applied to a tree of stored updates, so that sequences of successive nodes can be updated
efficiently later without having to iterate over them each time. This update is repeated for each constraint
on each iteration. Updates are increasingly damped on each successive iteration, and iterations continue
until the total residual is low. The effect of each iteration is to partly close gaps in loops, distributing the
error around the loop. The optimisation converges rapidly to a globally accurate map, and this map is free
of the obvious linearisation artefacts seen when optimised using an EKF, or a simple relaxation procedure.

The TORO framework (Grisetti et al., 2007b) improves on the method by Olson et al. (2006) by building
an update tree based on spatial rather than temporal proximity of nodes. This reduces the number of nodes
that must be updated in most environments, particularly where a robot repeatedly visits the same area, or
where the density of constraints is higher. Accurate maps are generated from initial maps containing large
accumulated errors, as shown in Figures 3.7(a) and 3.7(b).

These approaches work in 2D, however they do not easily generalise to 3D, as 3D rotations are not com-
mutative. Instead, for the 3D version of TORO (Grisetti et al., 2007a), the translational and rotational
components of motion are separated and updated alternately. Errors in rotation are distributed over se-
quences of relative poses by spherical linear interpolation. This separation means covariances between the
orientation and translation of each relative position estimate are ignored, however this approximation does
not appear to degrade optimised maps.

A successful application of graph-based SLAM is described by Folkesson and Christensen (2007). This scheme
uses a map of robot poses and landmarks based on GraphSLAM, which is generated from laser scanner and
IMU measurements from a wheeled robot. A consistent map of a university campus is produced from a track
of about 1km in length. In addition to GraphSLAM-like landmark elimination, sequences of pose estimates
are merged into local submaps, speeding up later optimisation. Regularly applying multi-level relaxation
generates the global map.

3.2.6 Summary of SLAM algorithms

In summary, many SLAM systems have been proposed which work well when either the environment is small,
or measurement errors are low and free of gross errors. These methods have two major limitations however:
firstly they usually assume measurement errors are Gaussian, however this is not the case with computer
vision where gross errors often occur; and secondly, many of these methods are computationally expensive,
and have high complexity in the size of the mapped areas, limiting their large scale application.

The popular EKF-SLAM approach can generate accurate and consistent maps on a small scale, when mea-
surement errors are relatively low and approximately Gaussian. For larger-scale navigation, many small maps
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(a) Poses from odometry
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(c) Poses after 2 TORO iterations
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(d) Poses after 10 TORO iterations. Gap is closed.

Figure 3.6: Estimated positions of a robot as it travels around a rectangular path. Errors accumulate, so
the robot’s odometry does not show it returning to exactly the same place, however the loop closure event
is detected and an edge is added to the pose graph. Each iteration of the pose graph optimiser (TORO)
reduces the size of the gap in the top-left corner.
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(a) Initial trajectory from a spanning-tree (equivalent to
dead-reckoning).

(b) Trajectory optimised by TORO

(c) Trajectory optimised by TORO when one erroneous rela-
tive pose measurement is introduced

(d) Trajectory optimised by TORO when one incorrect loop
closure is introduced, with certainty much lower than
other constraints.

Figure 3.7: The TORO framework Grisetti et al. (2007a) transforms a graph of relative poses into an
optimised map. This data simulates a robot moving on a sphere, with regular loop closure events. TORO, like
EKF-SLAM, finds an approximation to the most likely map, assuming errors are Gaussian. This assumption
makes these approaches sensitive to outliers, as illustrated by (c) and (d) where one outlier is introduced in
each case. 8650 constraints between 2200 vertices are optimised in about 10 seconds. This raw data was
from Stachniss (2008) and was used in the paper by Grisetti et al. (2007a).
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generated by EKF-SLAM may be added together, for example using the ATLAS framework (Bosse and Zlot,
2008), however robust data association is essential to ensure no gross errors in position are incorporated into
the EKF.

EKF-SLAM schemes have high (quadratic) complexity because a matrix of covariances between landmark
positions and the current robot pose is maintained. If the robot trajectory is estimated however, the covari-
ances between landmark positions do not need to be estimated, as landmark observations are conditionally
independent given the robot’s pose. Particle filters such as FastSLAM (Montemerlo et al., 2002) can effi-
ciently represent the distribution of possible trajectories, possibly with a constant number of particles when
trajectories contain many small loops, and sensor and odometry measurements are reliable (Stachniss et al.,
2005). A particle filter also has the potential to model uncertain data associations (or equivalently uncertain
loop closure events), however these must be resolved soon afterwards (Nieto et al., 2003). There is also a
risk of impoverishment, i.e. the set of particles not being representative of the robot’s trajectory.

An alternative graphical model of SLAM, where nodes represent the robot’s pose and edges represent relative
pose estimates, allows accurate maps of large areas to be generated, despite substantial accumulated errors.
These methods also achieve lower complexity, and have the advantage that gross errors (for example incorrect
loop closures) could potentially be removed. A pose graph free of gross errors is needed initially however,
as shown by Figure 3.7. These methods also clearly illustrate the importance of loop closure for accurate
mapping.

3.3 Visual Simultaneous Localisation and Mapping

Most of the SLAM algorithms described in the previous section have been applied to visual SLAM, however
not always with as much success as with other sensors or sensor combinations. Some existing real-time
systems for visual SLAM suffer from large accumulated errors, and often encounter gross errors or fail
entirely in visually difficult environments (for example dynamic environments).

This section describes how SLAM algorithms have been adapted to cope with the difficulties of visual SLAM.
As described earlier, these difficulties include data association difficulties (incorrectly matching features
between frames; Eade and Drummond, 2008), large non-Gaussian error distributions in reconstructed point
depths (Montiel et al., 2006), moving objects incorrectly identified as being static (Williams et al., 2008),
and poorly-conditioned geometry. An additional problem when positioning using only a single camera is
a global scale ambiguity: the actual scale of the world and speed of the camera can only be estimated by
identifying something of known size, and small errors in scale can accumulate over time. However a camera
has a key advantage over other sensors: rich information about the environment is collected that may be used
to recognise when places are re-visited, even when the robot is lost. This ability to detect loop closure allows
accumulated errors to be corrected, enabling accurate long-term positioning in bounded environments.

Recently several visual SLAM systems have been developed addressing some of these problems (Clemente
et al., 2007; Eade and Drummond, 2006, 2008; Cummins and Newman, 2008b; Sibley et al., 2010; Strasdat
et al., 2010). These all work by identifying a stationary 3D world and estimating the positions of both
landmarks and the camera within it. These schemes, and other significant advances in visual navigation,
are described in this section. More details of the BoW systems used by some of these schemes to actively
detect when loops are closed are described in Chapter 5, and more details of the RANSAC framework for
outlier rejection are given in Chapter 6. Similarly, the different feature matching and tracking approaches
are analysed in more detail in Chapter 4.

3.3.1 EKF-based and particle-filter-based single camera SLAM

One of the first successful schemes for single camera SLAM was MonoSLAM (Davison, 2003), an EKF-based
SLAM scheme. MonoSLAM integrates observations of point-landmarks with a constant velocity motion
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model. When a landmark is first observed, its location is represented by a set of particles sampled from the
ray on which it lies. For subsequent frames, these particles are projected back into the image, and the region
around each is searched for the same landmark. The particles are then re-scored depending on where the
landmark is found to lie, and after a few observations the distribution of landmark depths is approximately
Gaussian, and the landmark can be incorporated into the EKF as a 3D point. In subsequent frames, the
EKF’s prediction of the landmark location and camera pose is used to identify a region where it may lie.
This region is searched to locate the landmark, and this measurement provides an EKF update, which refines
the estimate of both the camera’s and landmark’s positions. The camera can be positioned accurately for
extended periods, provided that sufficient landmarks are tracked, however positioning is limited to small-scale
environments, with around 100 landmarks in total.

Numerous extensions to MonoSLAM have been proposed, including the Inverse Depth representation (Mon-
tiel et al., 2006), which allows immediate initialisation of landmarks when they are first observed, by esti-
mating the ray on which they lie, and the inverse of their depth. While landmark depths recovered from
a small number of observations are non-Gaussian, the inverse of these depths is approximately Gaussian.
Once points are reconstructed more accurately, their 3D position is used instead. This innovation allows
immediate use to be made of new landmarks, and allows more distant points to be used.

Clemente et al. (2007) extend MonoSLAM to larger environments, by using the submap framework by
Estrada et al. (2005), which was described in Section 3.2.4. A 250m loop is closed, giving an accurate global
map. Validating the mutual consistency of tracked features before incorporating them into the EKF ensures
that positioning does not fail, despite a dynamic environment including pedestrians.

Another extension, by Williams et al. (2007), allows recovery from disorientation and positioning failure (from
featureless environments or where motion blur occurs). This scheme detects when tracking fails, and switches
to a relocalisation mode instead. The tracking stage of MonoSLAM is modified so that correspondences are
sought between each corner point in the current frame, and corner points in previous frames which fall in
the region where this corner point is predicted to lie (the FAST corner detector, described in Section 4.3.2 is
used). This increases robustness to tracking failure, as larger areas can be searched efficiently. A randomised
forest classifier (described in Section 4.5.1) is trained and used to match patches despite changes in scale
and orientation. When lost, the system enters a relocalisation mode, where landmarks which are likely to
be nearby, i.e. those within a sphere with radius increasing with time, are matched to currently-observed
features using RANSAC (described in Chapter 6), until a match is found. The EKF then estimates only the
camera pose for a few frames, to avoid making measurements which could corrupt the map while its position is
still uncertain. The system is demonstrated mapping a small environment (consisting of 70 features) for over
an hour. Tracking frequently fails (when the camera is directed at a featureless region), but recovers when
pointed back at a mapped location, however the system fails when objects in the environment are moved.
The authors suggest using FastSLAM to enable the system to scale to larger environments, although in later
work (Williams et al., 2008) the submap scheme of Clemente et al. (2007) is adopted, and demonstrated
mapping and detecting loop closure in a 70m loop.

MonoSLAM’s motion model limits the cameras’ motion, so that the distance that features can move between
frames must be small so that tracking does not fail (or become too costly if a larger region is searched for
each feature). In order to operate with more erratic camera motion, Gemeiner et al. (2008) describe an
optimised version of MonoSLAM capable of operating at 200Hz, however ‘real-time’ performance is limited
to just a few seconds, as the size of the map, and associated computational costs, grow.

Chekhlov et al. (2006) implement a similar monocular SLAM scheme, using an Unscented Kalman Filter
(UKF) instead of an EKF. The UKF is an extension of the EKF to highly nonlinear motion and measurement
models; internally the state vector is still represented as a multivariate Gaussian random variable, but the
update to this state is a highly nonlinear function. Instead of locally linearising this function, a number
of samples are drawn from the distribution of the state vector, these are propagated through the function,
then the distribution of states obtained is again approximated by a Gaussian distribution. This is used to
model the camera orientation, reducing the effects of linearisation during more erratic motion. A small-scale
Augmented Reality application is demonstrated; this is an application where erratic camera motion often

32



occurs, and small errors in orientation are undesirable (as they cause inserted objects to appear to float
around).

A similar approach by Lemaire and Lacroix (2007) combines bearings to landmarks with a prior depth
distribution in an EKF, which refines these landmark position estimates as more observations are made.
Panoramic images give a wide range of bearing measurements to each landmark, and provide the same
field of view on repeated visits to a location, enabling loop closure to be detected reliably. Navigation of
a 200m trajectory is demonstrated, however this is unlikely to scale much further due to the EKF’s high
complexity. Panoramic cameras combined with robot odometry are also used by Dellaert and Kaess (2006),
with measurements integrated in a ‘square root filter’; this has lower complexity than an EKF (the linear
system to be solved is kept sparse); a 200m indoor trajectory is mapped in 11 minutes, although no loops
are closed.

In summary, EKFs have been used extensively for single camera SLAM. Difficulties including non-Gaussian
error distributions, tracking failure, and ensuring tracked points are reliable in dynamic environments, are
overcome with a variety of methods. In addition, submap schemes allow these schemes to scale to large
environments, however there is always a risk of complete failure if any outlier measurements are incorporated,
and regions mapped are still orders of magnitude smaller than regions mapped using other sensors (consisting
of just a single loop of a few hundred metres in most cases).

The FastSLAM particle-filter (Montemerlo et al., 2003) has also been adapted for single camera SLAM by
Eade and Drummond (2006). Measurements of landmarks consist of feature-points tracked between frames.
Real-time operation is limited to a few hundred landmarks however, of which 20 to 30 are observed per frame,
and loop closure is demonstrated only on small scales. On a larger scale, the authors had difficulties ensuring
that the set of particles adequately reflected the possible distribution of trajectories, and described the system
as ‘fragile’ (Eade, 2008). Subsequently, the authors adopted an alternative optimisation framework (Eade
and Drummond, 2007), which is described later in this section.

3.3.2 Submaps, structure-from-motion, and visual odometry

An alternative to conventional SLAM algorithms is to use structure-from-motion (SFM) techniques to es-
timate the camera’s trajectory and the positions of the features it observes. SFM techniques are normally
used for generating optimal 3D models from a set of images, or for terrain modeling from aerial images;
the popular ‘bundle adjustment’ approach (Triggs et al., 1999) estimates the structure via a large nonlinear
optimisation of structure and camera positions, optimised using Levenberg-Marquardt or a similar algorithm.
Levenberg-Marquardt optimisation has complexity quadratic (or often cubic) in the number of landmarks
and poses however, and a traditional implementation would be far too costly to run on a large map in
real-time. Note that one useful property of SFM is that a high frame-rate is not necessarily required for
accurate reconstruction (Nistér, 2001), provided sufficient (and preferably wide-baseline) observations are
made of each feature.

The first systems to apply SFM to navigation were visual odometry schemes. In visual odometry, the camera
pose is computed incrementally from observations, but no map is made. In order to use SFM techniques
for visual odometry, the size of the optimisation must be limited. In the case of visual odometry only the
positions of the last few camera poses, and the positions of features currently visible, are optimised. This
frees computational resources for the computation of accurate pose estimates, however without the loop
closure detection of SLAM, small errors in position will accumulate over time and grow without bound, until
eventually the true pose is unknown.

Nistér et al. (2006) use structure-from-motion techniques to position a single camera over a 600m trajectory
through a static outdoor environment. Approximate relative poses and feature locations are estimated from
a triplet of frames. This structure, and the camera poses, are then refined iteratively to improve the estimate
while removing outliers (Nistér, 2003). Several additional frames can subsequently be positioned with respect
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Figure 3.8: Full bundle-adjustment is costly, but in practice optimising only a few recent camera poses, and
the features visible from these positions, give accurate trajectories efficiently (sometimes in constant time,
until loops are optimised).

to this local structure. Feature matches between frames are established by tracking features over consecutive
frames. Accumulated errors are as low as 2% of the distance travelled after two thousand frames.

More recently Mouragnon et al. (2009) position a single camera in a similar way; by tracking features
between frames, computing the transformation between frames by RANSAC, then optimising recent poses
and structure. A trajectory of 500m in a dynamic environment containing pedestrians is reconstructed, and
other tracks are reconstructed with errors considerably less than 1% of the distance travelled. With a stereo
camera processing costs per frame increase substantially, however positioning is demonstrated on a more
complex, looping track.

Visual odometry is also possible using an EKF-based framework. Civera et al. (2009b) position a camera
along a trajectory of 650m through a static outdoor environment, which includes some tight corners, from
a dataset which includes images, IMU data and wheel odometry. The trajectory is recreated to within
1% of ground truth, and hundreds of features are matched robustly between frames using a RANSAC-like
framework (described in Section 7.2). Parts of the system run in real-time, although overall the system runs
at 1Hz.

SFM techniques have also become popular for solving SLAM. Again, the complexity is limited by optimising
the positions of only the last few camera poses, and the features currently visible (Figure 3.8). Klein and
Murray (2007) describe a bundle-adjustment based scheme for SLAM, where tracking is used to match
features between frames, then occasional keyframes are selected for refinement. A robust cost function
together with the large number of points matched between keyframes reduces the effect of outliers, and
the system uses the computed geometry to actively search for additional feature matches. In addition, the
keyframe selection enables navigation to continue while the camera is stationary; this is a situation which can
cause EKF-SLAM, and other systems (Eade, 2008) to fail. A single-room scale real-time Augmented Reality
application is demonstrated, and maps considerably more accurate than those estimated with an EKF are
generated, although, as with an EKF, the system can fail completely with motion blur or incorrectly tracked
features.

A limitation of previous single camera SLAM schemes is that they operate in 3D Euclidean space, where
positions in the map are assumed to be normally distributed about some absolute values. This is not an
appropriate representation for single camera SLAM, where the global scale ambiguity leads to distances, as
perceived by the robot, varying as the scale drifts. This limitation was addressed by Strasdat et al. (2010),
who extend the scheme by Klein and Murray (2007) to a larger environment, where frames are connected by
transformations incorporating changes in scale. Loop closure detection is also added, by searching the map
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for landmarks which resemble features which are visible. A 220m loop is mapped in near real-time, then
the transformations between keyframes are optimised using Levenberg-Marquardt. As these transformations
include the change in scale between pairs of frames, scale drift can be corrected both around the loops and
within the loop. Optimising the scale in addition to the transformations is essential to recover an undistorted
map.

Global Euclidean representations of space also introduce difficulties when navigating using other sensors;
Sibley et al. (2009) argue that it is this representation of space which makes loop closure costly, as many poses
must be adjusted in order to incorporate loop closure information. Sibley et al. describe a stereo camera
SLAM scheme similar to the scheme by Klein and Murray (2007), with only local poses and landmarks
optimised each time a keyframe is added. A sequence of local coordinate frames are maintained, so that no
global update is needed on loop closure. The global map consists of a pose graph of these local frames, with
odometry and covariances between frames provided by local bundle adjustment. Loops are detected using
BoW (described in Chapter 5). Positioning over a complex track of over a kilometre is demonstrated, with an
offline relaxation approach giving an accurate global map. With the addition of active loop closure detection,
the scheme is demonstrated generating a topologically correct map of a 121km trajectory (although no map
is shown) with position estimates from computer vision used 90% of the time, and a motion model and IMU
used to fill in the gaps.

An alternative to this continually-changing co-ordinate frame approach is described by Eade and Drummond
(2007). Local maps are built using a bundle-adjustment-like local optimisation. These local maps are fused
via an Atlas-like submap framework. The transformations and estimated covariances between coordinate
frames are refined by gradient-descent subject to transformations composing to the identity transformation
around loops. Large loops can be detected using BoW and closed rapidly by adding edges to the graph
(Eade and Drummond, 2008), although optimisation becomes expensive when maps are large (Eade, 2008).
Limitations of this scheme include deciding when to start new submaps, and coping with a stationary camera;
in these circumstances the system can fail entirely.

A pose graph-based approach using a stereo camera is described by Konolige et al. (2009). A sequence of
relative poses between frames are estimated by tracking features, together with relative poses from global loop
closure detection, which allow long trajectories to be mapped consistently, and recovery from gross errors,
such as becoming lost. Navigation is demonstrated over a 10km outdoor track, although relative positions
from an IMU are needed for about 2% of frames where positioning fails, sometimes due to camera occlusion.
The authors claim their scheme is applicable to single camera SLAM, although this is not demonstrated,
and no framework to model scale drift is proposed. A TORO-like optimisation framework generates global
maps, with accuracy indoors comparable to a SLAM scheme using a laser scanner.

3.4 Discussion

In summary, numerous schemes have been demonstrated which enable robots to position themselves using
a single camera alone; these schemes often work in real-time and over tracks of hundreds of metres, while
often producing accurate maps within a few percent of ground truth. There are two major limitations of
these approaches however: firstly the environments explored are largely static, and rapid cornering (during
which single camera geometry is poorly conditioned) is largely avoided, however typical indoor or urban
environments where robots will one day operate contain moving people and vehicles; a robot moving through
these environments must cope not only with these dynamic objects, but also with erratic motion including
rapid cornering. To overcome these limitations a successful SLAM scheme must function despite these
challenges, and critically, must be able to recover from gross errors in positioning.

The second limitation of many of these schemes (Lemaire and Lacroix, 2007; Dellaert and Kaess, 2006; Eade,
2008; Strasdat et al., 2010) is their high algorithmic complexity—the SLAM algorithms become too costly
for real-time operation as the mapped area grows. SLAM methods with lower cost and complexity should
be used for longer term navigation.
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A further limitation of many of these schemes, particular those based on EKF-SLAM or particle filters, is the
potential for irreversible failure if any gross outlier is incorporated into the filter, or occasionally if tracking
fails. While numerous schemes work around particular cases where gross errors could cause SLAM to fail, for
example by using geometric compatibility tests to validate matches (Clemente et al., 2007; Williams et al.,
2007), or by actively detecting tracking failure (Williams et al., 2007), there is always a chance that an outlier
will be missed. This is also a potential problem with schemes based on bundle adjustment, however robust
cost functions eliminate much of the risk, provided sufficient features are tracked.

The one class of SLAM algorithms which can recover from gross failure are those based on pose graph
optimisation, as erroneous relative poses can always be deleted later. A pose graph which is largely outlier-
free is needed to generate accurate global maps however. In order to reduce the chance of gross outliers in
relative pose estimates, multi-view robust bundle-adjustment based methods, or two-view RANSAC-based
methods, appear to be the best approaches, as poses can be computed from large numbers of point matches
while outliers are eliminated. High frame-rates are not required for these multi-view approaches, and this
provides a possible solution to the problem of tracking failure: by selecting an appropriate sparse sequence
of frames, more expensive but potentially more robust matching approaches can be used to compute relative
poses, despite intervening frames containing potential sources of failure such as motion blur, featureless
regions, or occlusion by moving objects. This type of approach, where visual odometry is used to estimate
incremental poses, which are combined in pose graphs with the occasional loop closure event, is the defining
characteristic of the most successful stereo SLAM schemes to-date, including Konolige et al. (2009); Sibley
et al. (2010); Newman et al. (2009).

The pose graph optimisation schemes described operate in global Euclidean space, which would make adap-
tation to model scale drift challenging, however scale drift could potentially be corrected before the pose
graph is optimised, or a more expensive optimisation on a pose graph consisting of many local frames, such
as the approaches of Strasdat et al. (2010); Estrada et al. (2005); Sibley et al. (2010) may be feasible.

In conclusion, the most suitable contemporary SLAM algorithms for large scale and robust single camera
SLAM are those based on pose graph optimisation. These algorithms scale to large environments, can
tolerate substantial accumulated errors, and can potentially recover from complete failure caused by gross
outliers. A set of initial relative pose estimates which are outlier-free is required, so relative pose estimation
should be robust so that few outliers occur, and any remaining outliers should be detected and removed
prior to pose graph optimisation.
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Chapter 4

Image description for robot

positioning

Abstract

This chapter reviews the different ways of detecting features in images, and the different ways
these features can be described, in order to choose a suitable detector-descriptor combination for
robot positioning. Following this review, several of the most suitable real-time detector-descriptor
combinations are compared experimentally. The FAST corner detector almost matches the per-
formance of contemporary corner detectors, while being considerably cheaper to extract. Larger
numbers of features provide similar repeatability to only selecting the best features, and all fea-
ture detectors are shown to have sufficient localisation accuracy for subsequent pose computation.
Considerably higher localisation accuracy is obtained in larger images however. For typical robot
motion, cheap image-patch descriptors around FAST corners outperform expensive SURF invari-
ant descriptors, however invariant descriptors would be required if large changes in scale were
observed on multiple visits to a location.

BoWSLAM uses images captured from a digital camera to position a robot in two ways: firstly, to recognise
when two images show the same place, so that the robot can recognise when it visits somewhere it has been
earlier (using BoW; Chapter 5); and secondly, to compute the robot’s motion by estimating the position of
the camera relative to the observed world as the camera moves (Chapter 6). These processes both require
images to be described in a way that allows them to be compared efficiently. In this chapter we examine
different ways of describing images, and establish which of these many options are suitable for real-time
robot localisation and positioning.

4.1 Image description for location recognition

For robust location recognition it is necessary to detect when two images show the same place regardless
of the pose of the robot when they are captured. In the case of an upright robot moving on a plane, for
example a wheeled indoor robot or a vehicle following a road, two images showing the same place will show
many of the same objects, with the same orientation and vertical configuration, but not necessarily in the
same horizontal configuration or at the same scale. For a camera moving in three dimensions (for example
attached to a quadrotor or a human), objects can appear at a wide range of orientations and configurations.

An additional problem is that two images taken from the same place will not necessarily overlap substantially.
Using wider-angle images reduces this risk, and in some circumstances panoramic or omnidirectional images
can be used, largely eliminating this problem.
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To detect when two images are likely to show the same place they must first be described in a way that
allows them to be compared efficiently. For this description either some characteristic of the entire image,
or a set of descriptors each describing a different part of the image can be used.

In some circumstances, for example when there are a large number of training images (many photos of a
location from different viewpoints) direct comparisons between colour images downsampled to 32× 32 pixels
can be used to identify matching images (Torralba et al., 2007). Direct comparisons between pairs of images
does not work in general however due to parallax effects and perspective changes, and brute-force searches for
transforms which will align images is only computationally feasible in the simplest cases (such as panoramic
images captured from nearby locations, where a transform with one degree of freedom will align two images
Nielsen et al., 2008). A more suitable option is to use a characteristic of the entire image which does not
depend on the image’s geometry, such as the distribution of colours it contains. Two images showing the
same place are likely to have the same distribution of colours. Histograms are commonly used to describe
an image’s colours: the colour space (often RGB) is divided into bins, the number of pixels with colours
belonging in each bin is counted. A multi-dimensional histogram can be used if multiple colour channels
are present. The similarity of pairs of images can then be measured by comparing the similarity of their
histograms. The problem with this approach is that two images with the same distribution of colours do
not necessarily show the same place; in other words this description is not sufficiently distinctive. However
it could potentially be used as a fast first-pass measure of image similarity.

Histograms are used for robot localisation by Werner et al. (2008): 3D 64-bin RGB colour histograms from
omnidirectional images are used to partition a building into five zones, each characterised by a different
distribution of colours. As a robot moves through the building its position estimate from odometry is
improved by matching the histograms it observes to these zones, however the histograms alone do not
provide enough distinctiveness for localisation without a prior position estimate. A further limitation of RGB
histograms is that changes in illumination will change the distributions of colours observed; a more robust
approach is to use a colour space with illumination-invariant channels, for example the hue and saturation
channels in the hue-saturation-value (HSV) colour space are approximately illumination-invariant, therefore
hue- and saturation-histograms do not change substantially with changing illumination (Filliat, 2007). The
value (intensity) channel can also be normalised (adjusted to have a certain mean and variance) to give
histograms with reasonable illumination-invariance (Filliat, 2007). 3D histograms are used in combination
with other descriptions by Hays and Efros (2008) for a related image-search task: a 3D histogram with
14 bins for each of the illumination-invariant a* and b* channels of the perceptually-uniform La*b* colour
space, and a coarser 4-bin representation of the L (luminosity) channel. These histograms are shown to be
complementary to descriptions of shape and texture.

An approach to location recognition that provides greater distinctiveness is to describe many different parts
of each image (features) with different descriptors. Pairs of descriptors can be compared to measure how
similar they appear, so that the two descriptors of an object visible in two images should appear similar.
This allows image similarity to be measured: an image with many similar-looking descriptors to another
image is likely to contain the same objects, and hence is likely to show the same place. Describing images as
sets of descriptors is also useful for computing robot positions incrementally, and is described in the following
section.

4.2 Image description for robot positioning

In BoWSLAM, images are also used for incremental positioning, i.e. computing the new position of a robot
relative to its previous position, so that its trajectory can be reconstructed. As a robot moves, it captures
images of its environment. To be useful for incremental positioning these images must be captured regularly
enough that there is substantial overlap between sequences of images, as objects must be observed multiple
times in order to estimate the camera’s motion relative to them. These images must be described in a
way that allows the positions of these objects to be measured in a sequence of images. As with location
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recognition, one way of doing this is to describe many different parts of each image with a different descriptor,
then identify matches between these descriptors.

For a slow-moving robot with a large FOV camera, capturing one or two images every second may be
sufficient for positioning. For faster robots moving erratically and cornering quickly, a higher frame-rate
may be needed, for example 10 frames-per-second (10Hz). For real-time operation, descriptions of these
images must be computable at comparable speeds (on the kinds of processors with which mobile robots
are equipped; Chapter 2), and ideally at higher speeds so that resources may be used for other tasks. In
this thesis, datasets captured at between 2Hz (for a wheeled robot indoors) and 10Hz (for a 6 DOF dataset
including rapid cornering, erratic motion, and speeds of up to 30 km/h) are used, although lower framerates
may also be practical.

Many contemporary camera positioning systems use a feature-tracking approach, rather than matching
descriptors. To track features, the locations of features in previous frames are used to predict the region in
a subsequent frame where each feature is likely to lie. Higher framerates are required for tracking, so that
features do not accelerate substantially between frames; many positioning schemes using tracking require
framerates of around 20Hz (e.g. Davison, 2003; Eade and Drummond, 2008; Strasdat et al., 2010), or higher
(e.g. Taylor and Drummond, 2009; Gemeiner et al., 2008). When sequences of frames are occluded by moving
objects or corrupted by motion blur however, feature tracking will fail and a matching approach is needed
to resume navigation.

In summary, when either a low framerate is used, or a sequence of frames is unusable, the problem of
positioning a robot first requires the locations of matching objects in two images to be identified, even
though the frames may be captured from substantially different viewpoints. Describing an image for this
task is closely related to the problem of describing an image for robot localisation, where we want to identify
whether two images contain the same objects but are not necessarily interested in matching these objects
between images. In the remainder of this chapter we consider contemporary approaches to image description
which may be suitable for either of these tasks, ideally however a description scheme suitable for both tasks
will be identified.

Describing images as sets of descriptors consists of two steps: firstly the selection of features that will be
described, and secondly describing these features in a way that allows the similarity of the objects they
describe to be measured. These two steps are described in the following two sections.

4.3 Image feature detection

There are numerous different methods for selecting a set of image features. Most aim to have the following
two properties. Firstly, the features should be repeatable: ideally an object corresponding to a detected
feature in one image should also lead to a feature in another image showing the same object, so that it is
possible to identify that the object exists in both frames when descriptors are compared. Secondly, features
should be descriptive: features should selected that are distributed across the most informative parts of
scenes so that as much of the information contained in the image is used as possible, maximising the chance
that images of the same place can be matched, while distinguishing between different places. A further
requirement for the applications described in this thesis is that features should be extracted fast enough for
real-time processing of frames (Section 4.2). In these applications feature detection is often the only stage
where entire images are processed, i.e. where complexity increases with image size.

To ensure that features are repeatable for a particular class of images, some combination of the following
properties are required:

Rotation invariance The same features should be detected regardless of the orientation of the object.

Scale invariance The same features should be detected regardless of the distance to the object, i.e. regard-
less of the apparent size of the object in the image.

39



Perspective/affine invariance The same features should be detected regardless of the pose of the object.
The image of a planar object changes substantially as the camera moves, but these images are related
by a perspective transformation (Clarke, 2009). Typically many features are locally planar, and on
a small scale the perspective transforms are very well approximated by simpler affine transforms.
Perspective/affine-invariant feature detectors aim to detect the same features regardless of the pose of
the object, although this is usually only possible up to a certain point due to large changes in local
appearance. Perspective or affine invariance is not possible in general for 3D scenes, as different parts
of the same object may be visible in two images.

Illumination invariance Changes in the illumination level should not affect the features that are extracted.
This is important for scene recognition, as illumination is likely to change between visits (depending
on the time of day, or whether lights are on), but is less important for sequences of frames.

Robustness Motion blur and sensor noise should not affect the features that are extracted. This is usually
achieved partly through applying a smoothing function (Gaussian blur) to the image before extracting
corners.

Global effects The same features should be detected on an object regardless of the appearance of the rest
of the scene. This is impossible to achieve exactly when the number of features extracted from each
image is constant (unless features describe the entire image uniformly); often an object comes into view
on which many strong features are detected, and other features that were detected in previous images
are discarded as being too weak.

For these properties to be useful, the corresponding feature descriptor must also have the equivalent property,
for example if a particular object is detected at a range of scales, the descriptors of that object must indicate
that the objects appear similar despite the change in scale.

A further important requirement for applications where image geometry is used is that features can be lo-
calised accurately within the image. This means that the location of a feature in the image should correspond
closely to the projection of that feature’s corresponding object in the world into the image. If features are
not accurately localisable then errors in locating them in the image will be propagated into estimates of
scene and camera geometry derived from these features. Feature localisation accuracy is analysed in detail
in Section 4.4.1.

Several classes of image features have been used in various applications, including edges, corner points, blobs,
and segments. The following sections detail some of these different approaches.

4.3.1 Edge features

Edge features consist of the lines in an image corresponding to straight edges in the world, for example
straight lines on the outline of 3D objects, or the line where an object changes texture or colour. Line
features can be detected in intensity (single-channel) images by identifying points where intensity or texture
change rapidly in one direction. To find these points we consider the image I to be a function I(x, y) mapping

pixel locations to intensity. Two ‘derivative images’ can then be computed with values ∂I(x,y)
∂x and ∂I(x,y)

∂y

(these derivatives are approximated efficiently by a filter equivalent to smoothing the image, to reduce the
effects of noise and orientation, and taking differences between adjacent pixels). From these derivative images
edge pixels can be identified efficiently as the points with high gradient in one direction, as in the Canny
edge detector (Canny, 1986) for example.

Alternatively, edges on the boundaries of different textures can be found using a similar approach: firstly,
a new “standard deviation image” is computed, where each pixel value is given by the standard deviation
of pixel values in a patch around the corresponding point in the original image. The standard deviation is
approximately constant within textures, but varies between textures, and on the boundary between dissimilar
untextured areas. Extrema in the derivative images of this standard deviation image correspond to edge
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Figure 4.1: Interest points found by the FAST corner detector. A minimum separation constraint is imposed
here. Image patches centred on each corner are used as descriptors.

pixels (Hidayat and Green, 2009). Both of these algorithms give ‘edge images’ of pixels that are likely to fall
on edges.

Straight edges can be detected efficiently from these edge images via a Hough transform (Duda and Hart,
1972), a brute-force but efficient approach where bins representing every possible line in an image are set-up,
and each edge pixel votes for the bins corresponding to lines on which it may fall. Bins with the most
votes correspond to straight lines in the image. Alternatively the RANSAC robust model-fitting framework,
described in detail in Chapter 6, could be used.

Edge features are widespread in indoor and urban environments, for example around doors, windows, build-
ings and walls, and in aerial images, for example along roads and boundaries, although straight edges are
less common in natural environments. Difficulties in using edge features include describing them reliably so
that edges may be matched between images, and in developing algorithms for multi-view geometry based on
edge features. While these problems may be overcome in the future, to date the most successful applications
of edge features involve tracking edges between video frames, for example Drummond and Cipolla (1999);
Rosten and Drummond (2005); Mills and Pridmore (2003), as tracking an edge in a video frame can be
achieved using an efficient one-dimensional search around where the edge is predicted to lie.

4.3.2 Corner features

A popular class of features consist of the points in an image corresponding to corners in the world, for
example corners on the outline of 3D objects, or corners on the boundary of two regions of different texture
or colour. Corners can be detected in intensity images by identifying points where intensity changes rapidly in
two directions. One of the most popular corner detectors is the Harris corner detector (Harris and Stephens,
1988), which finds corners efficiently from derivative images as points where the image has significant gradient
in the direction perpendicular to its strongest gradient. Harris and Stephens (1988) use an approximation to
the gradient strength; however for a small additional cost these gradients can be computed exactly, improving
the performance slightly (Shi and Tomasi, 1994). The smallest of the two gradients provides an effective
score of the corner’s quality.

These detectors only locate corners to the nearest pixel, however potentially more accurate ‘subpixel’ locali-
sation accuracy can be obtained by examining the corner’s surroundings. The kernels used to evaluate image
derivatives can be applied to patches at subpixel locations by interpolating between pixel values. A corner’s
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location can then be refined by iteratively moving these kernels until the derivatives are maximised (Wang
and Brady, 1992), as implemented in the OpenCV Computer Vision Library (n.d.). Alternatively, corner
locations can be improved by fitting a paraboloid to local gradients, then taking the location of its maximum
(Zhu et al., 2007).

An alternative way to characterise corners is as local extrema, that is as points with intensity significantly
greater (or smaller) than many surrounding points. This approach is taken by the FAST corner detector
(Rosten and Drummond, 2006), which finds points with values significantly greater/smaller than 9 (or up to
12) consecutive pixels in a 16-pixel ring around the point. This approach is very fast, as most points can be
eliminated quickly. The difference between the centre and the ring pixels provides a measure of the corner’s
quality. An example of features found by the FAST detector are shown in Figure 4.1.

The corner detectors described can detect thousands of candidate points across an image, and often these
points are tightly grouped together around highly textured areas (Figure 4.2). To ensure that a high
proportion of the image is described with a minimal number of corner features, only the highest scoring
corners, subject to a constraint that they are further than a certain distance from other corners, can be
chosen. This procedure is implemented efficiently by sorting corner locations by their score, then selecting
the strongest corners in order of strength, with a minimum separation constraint imposed by binning corners
by location, then comparing each candidate with corners in nearby bins. A good spread of feature points
across the image may also help to ensure subsequent camera position computation is well-conditioned (Mei
et al., 2009).

A big advantage of features corresponding to point locations in the image (i.e. corners rather than edges) is
that many problems in multi-view geometry (camera pose and scene structure analysis) can be solved given
matching point locations between images (Hartley and Zisserman, 2003). A disadvantage of corner features
is that corners often arise in images due to the edges of nearby objects intersecting edges that fall behind
them. While these corners are potentially useful for scene recognition (the co-occurrence and proximity of
these objects help characterise a particular location) they do not correspond to fixed 3D point locations in
the world, and hence usually need to be eliminated before scene or camera pose computation can occur.

If a camera views an object from different orientations, the same corners are usually detected (these cor-
ner detectors are rotation-invariant, and are weakly perspective-invariant). However, often when there is a
substantial change in scale between images, different sets of corners are detected, due to the fixed size of
the detection filters, and the unsophisticated minimum separation constraints. This is only an important
consideration when descriptors around these corners are scale-invariant. Corner detectors will detect large
numbers of candidate points (before the weaker points are culled) in most indoor, urban or natural envi-
ronments, and sufficient points for many applications are found even in images appearing feature-poor, for
example the Antarctic ice photographs in Figure 7.6.

4.3.3 Blob features

A related class of features are blob features, which consists of small image patches that are brighter or
darker than their surroundings. These patches can have a range of sizes (and often shapes), so offer better
scale invariance (and some perspective invariance), although blob features are often more costly to extract
than corner features. Both a point-location (e.g. a centroid of the patch) and the patch’s scale are usually
recovered.

One suitable definition of a blob is a point where the Laplacian of the image (the sum of the second derivatives

of the image in two directions, ∂2I(x,y)
∂y2 + ∂2I(x,y)

∂y2 ) is locally high, indicating a local minimum, maximum
or inflection point. The Laplacian operator can be computed at any one scale by convolution with an
appropriately-sized kernel, however to detect blobs on a range of scales the Difference-of-Gaussian, or DoG,
detector provides a close approximation to the Laplacian (Lowe, 1999). The image is blurred by convolution
with Gaussian kernels at a range of different scales, then pairs of these blurred images are subtracted. Local
extrema in the difference images correspond to blobs that are brighter or darker than their surroundings.
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Figure 4.2: Top 380 interest points found by the FAST (left) and SURF’s DoH (right) feature detectors.
Features are closely grouped around the most textured regions, potentially leading to poorly-conditioned
geometry. Imposing a minimum seperation constraint degrades repeatability (Section 4.4.1).

An alternative measure of local curvature is the Hessian matrix of second derivatives. Curvature is highest
when the determinant of the Hessian (DoH) is locally high, corresponding to a blob. Bay et al. (2008) find
these blobs by approximating the kernels used to compute local derivatives with Haar wavelets, again at
a range of scales. As Haar wavelet responses can be computed efficiently from integral images (images of
2D cumulative sums of pixel values), DoH blobs are considerably faster to extract than DoG, although the
computational cost of extracting DoH blobs makes their extraction from sufficient frames for either real-
time feature-matching, or even real-time localisation challenging for many applications (Section 4.2). DoH
features extracted from an image are shown in Figure 4.2.

An alternative blob detector by Matas et al. (2002) finds Maximally Stable Extremal Regions, or MSERs,
which are connected components (patches) of images that are brighter (or darker) than their surroundings by
some threshold, and which have size that would change only slowly with changes in this threshold. As MSERs
are detected independently of the patch’s scale or shape these descriptors provide good perspective-invariance.
The implementation by Nistér and Stewénius (2008) runs in real-time, although even this implementation is
considerably slower than the corner detectors described. A further limitation of MSERs is finding a suitably
perspective-invariant descriptor to make use of their invariance. Mikolajczyk et al. (2005) evaluated several
highly-invariant blob detection algorithms on a small number of images. MSERs were found to outperform
several other detectors at repeatability, although this improvement was marginal, and they note that the
parametrisation of detectors had significant effects on the results. Gil et al. (2009) compared MSERs with
DoG and DoH blobs and found no significant difference in repeatability, when using high-resolution images
captured from a moving camera.

4.3.4 High-level features

An alternative class of features which we are interested in investigating further are higher level objects
detected in scenes, for example people detected using the HOG (Histogram of Oriented Gradient) detector
(Dalal and Triggs, 2005), text in scenes (signs) read using Optical Character Recognition (Vincent and Ulges,
2008), or corporate or clothing logos (Jenkins, 2008). Extracting these higher level features is generally more
costly than low level edge or corner detection, but these observations can potentially tell us much about the
content, location and 3D reconstruction of an image (Hoiem et al., 2008).
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4.3.5 Random features

Points chosen randomly (Nowak et al., 2006) or systematically (Filliat, 2007) from an image can also be used
to describe it, giving good description across the entire image, although often large areas of images contain
little information (for example sky or road) so a high descriptor density here is not useful. A disadvantage
of choosing features systematically is that lines visible in two images may coincide differently with the grid
of features, leading to substantially different descriptions; random features avoid these effects at the expense
of slightly worse coverage.

Random or systematically sampled features can be a cheap way to describe images for scene or object
recognition (Nowak et al., 2006; Uijlings et al., 2009; Hays and Efros, 2008), but have very poor repeatability
and localisation accuracy compared with features found by feature detectors (Rosten et al., 2010). For the
related problem of video-search, dense systematically-sampled features appear to outperform detected blobs,
and can aid the efficient computation of descriptors (Uijlings et al., 2009).

4.4 Choosing a corner detector

In summary, corner and edge features are the classes of feature most feasible for real-time matching and
localisation applications, although blob-features could also be considered if better scale and perspective in-
variance were needed. The difficulties in describing, matching, and making use of measurements of edges
makes corner points more attractive for image recognition applications, and applications where image ge-
ometry is used. Many different corner detectors have been proposed which could potentially be suitable for
BoWSLAM however, and different detectors perform well on different criteria. In this section an experiment
is designed in order to choose an appropriate corner detector based on our criteria.

4.4.1 Design of an experiment to compare corner detectors

While many publications have evaluated different corner and blob detectors (Rosten et al., 2010; Mikolajczyk
et al., 2005; Klippenstein and Zhang, 2007; Gil et al., 2009), each evaluates only a few detectors, on a limited
number of criteria, and on a particular class of images. These studies are of limited use in choosing a feature
detector for real-time robot navigation; three major limitations of these studies are that firstly that the
numbers of features detected are usually large (e.g. several thousand; Mikolajczyk et al., 2005), whereas
visual navigation schemes often describe images with between as few as ten (e.g. Davison, 2003; Chekhlov
et al., 2006), a few tens (e.g. Eade and Drummond, 2007), or a few hundred features (e.g. Mouragnon et al.,
2009; Sibley et al., 2009; Handa et al., 2010); and an upper-bound on the number of features is necessary
for real-time operation. Secondly, the distribution and localisation accuracy of features are not considered;
these are both important when reconstructing camera motion from images. Thirdly the parameters chosen
for detectors are rarely justified, and may be sub-optimal. The methods used, and repeatability results
obtained, are useful in designing this experiment however.

Schmid et al. (2000) evaluate several corner detectors on images of an artificial scene, where images are
captured from measured camera locations. Shi-Tomasi corners (“improved Harris corners”) outperform
other detectors at repeatability. Rosten and Drummond (2006) also use low-resolution images of an artificial
Augmented Reality environment, which are used to compare their proposed FAST corner detector to several
other corner detectors. They find FAST corners to be more repeatable than Shi-Tomasi corners, which in
turn are more repeatable than several other detectors. Gil et al. (2009) compared the repeatability of various
detectors on high-resolution images captured from a moving camera. These images have small to moderate
changes in scale and viewpoint. Harris corners outperformed other corner detectors, although Shi-Tomasi or
FAST corners were not included.

The performance of several affine-invariant blob detectors, not including DoH or DoG blobs, were evaluated by
Mikolajczyk et al. (2005). MSERs outperformed or matched other detectors at both speed and repeatability,

44



Figure 4.3: Six images used to test feature extraction and description; chosen to be representative of locations
where visual navigation would be useful. Different images are used from the training to reduce potential
effects of overparametrisation.

however none were extractable at a sufficient rate for real-time use. The evaluation by Gil et al. (2009)
included DoH, DoG and MSERs; these were found to have similar repeatability, but were outperformed by
Harris corners.

For robot positioning and localisation, the following properties are desirable:

Feasible for real-time applications The faster that features can be extracted, the greater the number of
images that can be described in real-time. Ideally feature extraction will leave sufficient resources for
other processes. In addition, for real-time applications the number of features detected must also be
bounded.

Repeatable As many detected features should be repeated in the other image as possible, so that sufficient
matches can be found.

Accurately localisable Necessary to enable scene geometry and camera trajectories to be recovered accu-
rately, and to validate that efficient use is made of large images.

Well-distributed throughout the image Necessary to ensure geometry is well conditioned (Mei et al.,
2009), and desirable to allow much of the image’s information content to be used for location recogni-
tion.

While many corner detection schemes exist (and in addition detectors can always be combined, potentially
improving their performance; Mikolajczyk et al., 2005), previous studies allow us to identify the set of detec-
tors which are most likely to be suitable for real-time robot navigation: firstly Harris and Shi-Tomasi corners
clearly outperform other corner detectors, and secondly, the recently-proposed FAST detector outperform
Shi-Tomasi corners in one study. In addition DoH blobs potentially outperform corners when more invariance
is necessary, so a comparison with these is also worthwhile when investigating the limits of corner detectors.
As localisation accuracy is potentially important, subpixel refinement of corners is also worth considering.

The simplest way to evaluate these criteria for our selected corner detectors is on images with known ground-
truth. A set of real photographs are chosen that are representative of different environments in which
the robot will operate (Figure 4.3). For each image, a ground-truth image pair is generated by applying a
perspective warp to the first image, then adding simulated sensor noise and a simulated change in illumination.
The warp is chosen with rotation, scale, and perspective changes representative of typical robot motion
between two views of a scene (Figure 4.4).
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Figure 4.4: Images are transformed by adding Gaussian noise, changing lighting levels and applying a
perspective warp. Noise with a standard deviation of 5 grey levels is added, together with a change in
illumination of up-to 15%. The warp is chosen randomly to scale each axis by up-to 20%, changes in scale
of about 10% are typical.

Figure 4.5: Six images used to train feature extraction and description.
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Repeatability (%) Proportion of features where a feature is also detected in the correct location in the
other image.

Distribution (%) The number of cells in a 100-cell grid containing a repeated feature.

Localisation accuracy (pixels) The distance of repeated features from their predicted location.

Efficiency (%) Proportion of detected features where the closest descriptor in the other image is also the
correct match.

Match distribution (%) The number of cells in a 100-cell grid containing a feature where the closest
descriptor in the other image is also the correct match.

Figure 4.6: Definitions of detector and descriptor performance measures

These images are not exactly like real images however; the simulated sensor noise and illumination changes
are not necessarily realistic, and every feature is a planar feature. However images of 3D scenes would
require a model of the world, which would contain errors. These simulated images contain no errors from
an incorrect 3D structure, no features from occlusion, no errors from the estimated camera model and are
cheap to generate. These properties allow measurements made in these images to be comparable with the
theoretical best case. A similar framework to this (including the same sensor noise model) is used in the
visual SLAM test image simulator designed by Funke and Pietzsch (2009): synthetic images are rendered
by warping real images onto the planar walls of a 3D model of a building, then using a ray tracer to project
these images into a synthetic image (these images are used later in this thesis; Figure 8.14).

This experimental setup allows repeatability, localisation accuracy and feature distribution to be measured:
repeatability is measured by detecting corners in one image, applying the perspective transform to feature
locations to predict where they lie in the second image, detecting corners in the second image, then searching
to see if a corner is detected in the same location (within a small radius, e.g. within three pixels of the
predicted location). A measure of localisation accuracy is given by the distance of each of these repeated
corners from its predicted location. A simple heuristic measure of the distribution of corners is given by
dividing the image into a 10× 10 grid, then counting the number of grid cells containing at least one of the
successfully repeated corners. These performance measures are summarised in Figure 4.6.

A minor issue with this approach is that features may coincidentally fall within three pixels of predicted
feature locations, even though they arise as a result of different objects. In large images this is fairly unlikely
as the total area within three pixels of a detected feature is small as a fraction of the whole image area. In
smaller images this could affect results, particularly as features are often closely grouped around textured
regions, however the effect is still small, and should not increase repeatability by more than a few percent,
and there is no reason to believe any one detector will be affected more than others.

The second challenge when evaluating corner detectors is to ensure that each one has an appropriate
parametrisation for the application. This was found by a brute-force search over the parameter space. The
following detectors’ parameters were tuned on a separate image set (Figure 4.5) to maximise an arbitrary
performance score, the sum of repeatability and distribution, expressed as percentages, for each detector. For
the Harris corner detector the parameter k controlling the approximation to the second-strongest eigenvalue
is tuned, and is set to a value 0.0035. For both the Shi-Tomasi and the Harris detector the Gaussian kernel
size is tuned; a kernel with diameter 3 is used. For all detectors the minimum separation is tuned; the
minimum value of 2 is clearly best for every detector. Increasing separation only increases the distribution
of repeated features by a small amount, as it causes a large drop in repeatability. While all the corner detec-
tors have minimum quality parameters, these parameters rarely make any difference in the corners chosen,
because we only choose a fixed number of the strongest corners from each image. For the DoH detector,
default parameters are used, as the parameters all directly affect either extraction time or the level of scale
invariance.
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Figure 4.7: A perfect corner detector will always find the pixel centre closest to the projection of the actual
3D corner into the image. The projected point will be distributed uniformly within a square about this
closest pixel centre (pixel centres are marked with dots). The cumulative distribution function (c.d.f.) of the
absolute error in the corner detector’s position for the point is then given by considering the area within this
square that also falls within a circle of a particular radius. The p.d.f. is then given by observing that the
derivative of the c.d.f. is the length of this circle’s perimeter falling within the square, giving Equation 4.4.2.

The experiment was also used to quantify the effects of varying image size, and the effects of increasing the
number of features. The experiment is repeated with 250 and 400 features detected per image, and with
images sized 968× 644 and 484× 322.

Measuring image feature localisation accuracy

In this experiment, a perfect corner detector could achieve 100% repeatability and distribution. Any detector
with lower performance could potentially be improved. This is not always the case with localisation accuracy
however, so in this section we determine how accurate a detector could possibly be.

Many algorithms for structure and motion computation from feature point matches assume that errors in
corner localisation are two-dimensional i.i.d. (independently and identically-distributed) normal random
variables (Hartley and Zisserman, 2003; Triggs et al., 1999), and hence errors are isotropic. This is a
reasonable approximation (when the camera is accurately calibrated), which allows standard least-squares
techniques to be applied easily. To aid the analysis of localisation errors, a convenient one-dimensional
measure of error is the absolute distance between the projection of the point into the image, and the detected
corner location. If the two components of the localisation error are i.i.d. and normal with mean zero and
standard deviation σ, this distance r has a Rayleigh distribution with parameter σ (Rayleigh distribution;
Wikipedia, 2010), which has p.d.f.:

f(r) =
r

σ2
e−r2/2σ2

(4.4.1)

A perfect subpixel-resolution corner detector would localise every feature exactly, however many corner
detectors only detect features to the nearest pixel (Figure 4.7). If we consider the best possible pixel-
resolution corner detector, which we assume will always locate the pixel centre closest to this projected
point, then from Figure 4.7 we can derive the following p.d.f. for the distribution of the feature localisation
errors that would be observed:

f (r) =











2πr 0 < r < 1
2

2πr − 8 arccos
(

1
2r

)

1
2 < r < 1√

2

0 otherwise.

(4.4.2)
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Figure 4.8: The best possible corner detector (without subpixel precision) is one that always finds the pixel
centre closest to the projection of the feature into the image. This plot shows the probability distribution of
the distances from the projected feature to the closest pixel centre (Equation 4.4.2).

This distribution has expectation 0.38260 pixels, and is show in Figure 4.8. Unfortunately the localisation
error defined here would be hard to measure directly for a real corner detector, as it requires estimating the
exact point in the image that a 3D point should project to. Instead, for the experiment we have devised,
where we measure how closely a point detected in one image corresponds to the transformation of that point
into in the other image, we have the situation shown in Figure 4.9.

From Figure 4.9, if a subpixel-resolution corner detector localises points with i.i.d. normally distributed
errors in each direction about the points’ true projection into the image, with standard deviation σ, then the
observed localisation errors, ‖E‖2, have a Rayleigh distribution again with parameter σR = E(‖E‖2)/

√
π,

and σ = E(‖E‖2)/2. A perfect subpixel-resolution detector would have ‖E‖2 = 0.

For the detectors which only localise features to the nearest pixel, the best-case theoretical distribution for
the localisation error, ‖E‖2, can be derived from Figure 4.9. The derivation is given in Appendix B. The
distribution has p.d.f.:

N (r) =

{

− 1
2r

7 + 3r5 − 6r3 + 4r 0 < r <
√
2

0 otherwise.
(4.4.3)

This p.d.f. is plotted in Figure 4.10, and has shape similar to the Rayleigh distribution. Its expectation is
128
315

√
2 = 0.57466 pixels. This result is used to demonstrate how close pixel-resolution corner detectors are

to achieving the highest localisation accuracy they possibly could.

Corner detector evaluation results

Table 4.1 gives the time taken to extract the different features. All except DoH would be feasible for a
real-time application, although FAST corners are considerably faster than any other feature. A significant
amount of resources could be saved if smaller images were used, as extraction times are approximately
proportional to the number of pixels. Subpixel refinement is feasible for a small additional cost, so could be
used if it was found to be beneficial.

Tables 4.2, 4.3, 4.4 and 4.5 shows the performance of the tested corner detectors in large images (sized
968 × 644) and small images (sized 484 × 322), when the best 250 or 400 features are extracted. In all
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Figure 4.9: A more practical way to measure localisation accuracy is to localise the same feature twice in
two images. For an ideal corner detector each true location (marked ×) is distributed uniformly within the
unit square centred on the detected pixel in each image (marked with dots), for example e1 from the centre
p1 in the left image and e2 from the centre p2. The absolute localisation error is then given by ‖e1 + e2‖2.
This quantity may be measured in a real image as the distance between the predicted location of a feature
(projected from its detected location in the other image) and its measured location.
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Figure 4.10: p.d.f. of localisation errors which would be measured experimentally for a perfect pixel-resolution
corner detector (Equation 4.4.3).
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Figure 4.11: Distribution of absolute corner localisation errors from the FAST corner detector; performance
is comparable with other detectors.
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Figure 4.12: Distribution of absolute corner localisation errors from the FAST corner detector. Results from
each of the six images from Figure 4.3 are plotted individually, showing there is no significant variation in
localisation accuracy between these different images, which show a range of indoor and outdoor locations.
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Figure 4.13: Distribution of DoH (SURF) blob localisation errors from experiment. Maximum likelihood
(ML) parametrisation of Rayleigh distribution is biased by the heavy tail—either these points are outliers or
a heavy-tailed distribution would be more appropriate.
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Figure 4.14: Distribution of Harris corner localisation errors from experiment. Note that subpixel refinement
gives a significant improvement for the corners that are already positioned reasonably accurately. Maximum
likelihood parametrisation of Rayleigh distribution is biased by the heavy tail again.
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Table 4.1: The FAST corner detector is considerably faster than other detectors. DoH blobs are barely
feasible for real-time use, although Harris-like detectors are, and subpixel refinement adds little additional
cost. Features are extracted from 968 × 644 images with detectors based on OpenCV Computer Vision
Library (n.d.) implementations, which are not particularly efficient. All detector implementations are single-
threaded.

Detector Time to compute (ms)
FAST 5
Harris 47
Harris+subpix 60
Shi-Tomasi 48
Shi-Tomasi+subpix 60
DoH (SURF) blobs 310

Table 4.2: Performance at repeatability and localisation in large (968 × 644) images, top 250 features.
Corner features have low localisation errors, close to the best possible for pixel-resolution corner detectors.
Performance measures are defined in Figure 4.6.

Detector Repeatability Distribution Localisation error (pixels)
FAST 66% 32% 0.65
Shi-Tomasi 69% 30% 0.74
Shi-Tomasi+subpix 68% 30% 0.61
Harris 73% 30% 0.64
Harris+subpix 72% 30% 0.61
DoH (SURF) blobs 67% 33% 0.97
Theoretical best 100% 100% 0.57

Table 4.3: Performance at repeatability and localisation in large (968 × 644) images, top 400 features.
Compared to the top 250 features, these lower-quality features do not have significantly different repeatability
or localisation error.

Detector Repeatability Distribution Localisation error (pixels)
FAST 68% 38% 0.69
Shi-Tomasi 72% 36% 0.75
Shi-Tomasi+subpix 70% 36% 0.63
Harris 75% 35% 0.67
Harris+subpix 73% 35% 0.64
DoH (SURF) blobs 65% 38% 1.01
Theoretical best 100% 100% 0.57
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Table 4.4: Performance at repeatability and localisation in small (484 × 322) images, top 250 features.
Localisation errors are slightly worse than in larger images, showing that larger images do lead to considerably
more accurate localisation. Otherwise performances are similar to performances in larger images.

Detector Repeatability Distribution Localisation error (pixels)
FAST 70% 32% 0.76
Shi-Tomasi 76% 31% 0.83
Shi-Tomasi+subpix 74% 32% 0.75
Harris 79% 31% 0.74
Harris+subpix 75% 31% 0.74
DoH (SURF) blobs 63% 36% 1.00
Theoretical best 100% 100% 0.57

Table 4.5: Performance at repeatability and localisation in small (484×322) images, top 400 features. Again,
introducing more features does not significantly degrade localisation accuracy or repeatability.

Detector Repeatability Distribution Localisation error (pixels)
FAST 70% 39% 0.79
Shi-Tomasi 76% 38% 0.84
Shi-Tomasi+subpix 74% 38% 0.80
Harris 78% 37% 0.77
Harris+subpix 75% 37% 0.78
DoH (SURF) blobs 62% 43% 1.08
Theoretical best 100% 100% 0.57
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cases DoH blobs have the greatest distribution across the image, with no significant difference between other
detectors. Extracting 400 features rather than 250 increases the distribution by around five percentage points
for all detectors and all image sizes.

The Harris detector has the highest repeatability by a small margin in all cases, with all corner detectors
outperforming DoH blobs on these images. Repeatability is slightly higher in smaller images, probably
partly due to the higher probability of descriptors coincidentally falling near to each other. Correspondingly,
localisation errors are slightly worse in smaller images. Repeatability is slightly higher when more features
are extracted; using these lower-quality features does not degrade performance.

Subpixel refinement decreases localisation errors by a small amount (5-20%) in most cases, however re-
peatability is slightly reduced, particularly for lower-quality features, as the refinement sometimes diverges.
Detecting this divergence could make subpixel refinement worthwhile. Note that gradient descent-based
subpixel refinement does not improve the localisation accuracy of FAST corners, even though the corners
that are detected appear similar. All detectors have localisation errors close to the theoretical maximum for
a pixel-resolution corner detector, except for DoH blobs which are substantially worse. Subpixel refinement
does not push detectors through this boundary, although this may be due to the coinciding-feature problem.

Figures 4.11, 4.13 and 4.14 show the distributions of localisation errors for the FAST detector, the Harris
detector and DoH blobs. Each has a heavier tail than the corresponding maximum likelihood Rayleigh
distribution, indicating that either a heavy-tailed distribution would be more appropriate, or corners arising
from nearby features are being matched incorrectly. Subpixel refinement is clearly improving the localisation
accuracy of features which are already localised accurately. Figure 4.12 shows the localisation errors of the
FAST detector in the six test images, and shows that there is no significant variation despite the wide range
of environments shown.

Corner detector evaluation conclusions

A range of different corner detectors have been evaluated for their suitability for robot localisation. Unlike
previous reviews, localisation accuracy and distribution have been measured, and the effect of different image
sizes, and of extracting different numbers of features, has been investigated.

Harris corners, Shi-Tomasi corners or FAST corners would all be suitable for robot navigation, of these
a major advantage of FAST corners is the low cost of extraction, although at the cost of slightly worse
repeatability.

Features are as accurately localised in large images as small images, hence a higher resolution image will
provide more accurate measurements for camera motion estimation. In Chapter 6, we note that large locali-
sation errors (with a mean of about three pixels or more in a low-resolution image) can cause a considerable
increase in the cost of camera pose computation. In this experiment all of these detectors’ localisation errors
are small enough to avoid this problem. In real images however, localisation errors are likely to be higher,
due to features on 3D objects appearing in slightly different places from different viewpoints, features from
slowly moving objects or slowly moving occlusion boundaries, and errors from camera calibration.

This evaluation had several limitations however, in particular that a repeatable corner detector is only useful
for wide-baseline matching when paired with a suitable descriptor. It is also unknown whether the sample
data is truly representative of real data. Average performances are evaluated on a set of six images, however
worst-case performance is often more important, especially when positioning using only a single camera, in
which case a single failure out of thousands of frames can introduce gross errors. Worst-case performance is
very data-dependent.

In conclusion, any of the corner detectors evaluated could potentially be used in BoWSLAM. Ideally the
FAST corner detector will be used, as it is substantially faster than other detectors, although is not quite as
repeatable as Harris-like corner detectors on this data. In order to find sufficient matches between frames,
an appropriate feature descriptor must also be used, and the performance of this descriptor will depend on
the corners detected. In the following section various descriptors are reviewed, then a second experiment
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builds on the results of this experiment in order to decide an appropriate detector-descriptor combination
for BoWSLAM.

Further work in feature detection

The FAST detector was chosen based on the requirement for features to be detected in real-time, and the
assumption that changes in scale were typically not too great. However for some applications (Section 8.4)
scale can change rapidly with changing view. In this case FAST corners are not necessarily suitable due to
their limited scale-invariance. This problem was recently addressed by Agrawal et al. (2008), who propose
a new detector, CenSurE (Center Surround Extrema) which aims to be both scale-invariant and to be
extractable in real-time. Like DoH features, these features are computed from applying bi-level DoG-like
filters to integral images, and scale-invariance is given by detecting features at a range of scales. The result
is a scale-invariant detector with comparable performance to DoH, but which can be extracted in about
one-third of the time. These descriptors were used successfully by Konolige et al. (2009) who use CenSurE
features to register sequences of frames in a visual odometry scheme.

A faster approach to multi-scale feature detection may be to extract FAST corners on multiple scales (Wagner
et al., 2008; Newman et al., 2009); the cost of extracting FAST corners in several down-sampled images would
still be a fraction of the cost of extracting other scale-invariant features such as DoH or CenSurE blobs.
Similarly, investigating the subpixel refinement of FAST corners may improve their localisation accuracy.

Finally, the model of sensor noise and illumination change used are unlikely to be particularly realistic. Using
real images would solve this problem, however a better approach may be to compare multiple images from
a fixed camera and construct a more accurate error model.

4.5 Image feature description

Once features have been extracted from images the next step is to describe the image patch around each
feature in a way that allows the similarity between features to be measured. Ideally, two features arising
from the same object visible in two images should have descriptors more similar than either descriptor is to
the descriptor of any other detected feature.

As with corner detectors, invariance to changes caused by different viewpoints and imaging conditions is
desirable. However too much invariance can degrade performance: the more invariance a descriptor has,
the higher the likelihood that multiple features from another image will have very similar descriptors. For
example, a rotation-invariant descriptor of corner features might match the top-left corner of a window
frame in one image to any one of the window frame’s corners in another image, whereas a simpler descriptor
may match only the top-left corner. Clearly this rotation invariance is needed if the camera may rotate
substantially between images (changing which window corner appears in the top-left for example), however
often images are captured from similar viewpoints when a robot visits the same environment repeatedly.
Usually perspective or affine invariance would imply scale and rotation invariance, however often a weaker
invariance, where the camera is assumed upright, is sufficient (Bay et al., 2006).

An additional invariance needed for descriptors is invariance to errors in feature localisation: if the patches
being described are not quite centred on exactly the same point, the descriptors should still be similar.

While many descriptors have been proposed, a major limitation of many is the time needed to extract
them. Similarly, some descriptors are considerably more expensive to compare than others, and storing
large numbers of descriptors can use a large amount of memory. A range of popular descriptors which may
be suitable for image description for robot localisation are analysed in the following sections. Many more
are reviewed by Li and Allinson (2008) and Mikolajczyk and Schmid (2003); these include many expensive
descriptors of image regions, and several low-dimensional descriptors, which are not considered here.
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Figure 4.15: Oriented patches are extracted from an indoor dataset. Simple patch descriptors are made
orientation-invariant by rotating them to align local image gradients. These oriented patches are grouped
by similarity.

4.5.1 Image patch descriptors

A simple and often very effective descriptor of the region around an image feature is simply a patch from the
image centred on the feature (Szeliski, 2005; Taylor and Drummond, 2009; Davison, 2003). To compare two
patches for similarity, the sum of squared differences (SSD; Moravec, 1979), or sum of absolute differences
(SAD; Milford et al., 2006) between corresponding pixel values can be used. Examples of patches centred on
FAST corners are shown in Figure 4.1.

These patch descriptors can be made illumination-invariant by normalising the patch (adjusting values to
have a particular mean). Alternatively the normalised cross-correlation, which is often used to compare
patches (Mikolajczyk and Schmid, 2003), is equivalent to the SSD after normalising the means and standard
deviations.

To make patches rotation-invariant they can simply be rotated to be oriented with the direction of the image
intensity gradient (Figure 4.15; Brown et al., 2004). Blurring the image (by convolution with a Gaussian
kernel) and sub-sampling over larger patches can be a good strategy to improve descriptors’ robustness in
the presence of noise (Mikolajczyk and Schmid, 2003), and coloured patches can also be used.

The main limitation of using patches as descriptors is their limited invariance to affine or perspective changes
in the image (Taylor and Drummond, 2009). In many Augmented Reality applications a known target is
located in a scene. In this case, a classifier trained on patches from the target, sampled at many scales
and from many viewpoints, can be used to match patch descriptors despite perspective changes (Taylor and
Drummond, 2009), however training these classifiers for more than a small number of points is infeasible. A
related scheme which can train classifiers for larger numbers of patches is the randomised forest scheme of
Lepetit and Fua (2006), although again training data is required and training is computationally expensive.

Many robot positioning schemes assume motion models, and hence can predict the appearance of image
patches when they are observed. Klein and Murray (2007) warp patches from the previous image before
matching with the latest image, and Chekhlov et al. (2006) store multiple patches subsampled at different
resolutions for every landmark; a patch in the new image matching any one of these is likely to be the same
landmark.
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4.5.2 Histogram descriptors

Instead of using one histogram to describe an entire image (Section 4.1), many individual histograms can
be used to describe the patches around each feature in an image. The advantage of using many local
histograms is that spatial associations between colours are preserved. Histograms are cheap to extract and
hue- and saturation-histograms provide a convenient and reasonably concise descriptor of colour that may be
complementary to a descriptor of shape. Local 16-bin hue- and intensity-histograms are used in combination
with descriptors of appearance (SIFT) by Filliat (2007) for indoor robot localisation. Similarly, normalised
local histograms at a range of scales are used for detecting repeated shots of each location in a film, by Chum
et al. (2007).

Alternative descriptors of colour are also occasionally used. Yuen and MacDonald (2002) localise a robot
in a large office using a combination of vertical edges, which are used to accurately triangulate positions,
and local colour descriptors, which provide additional distinctiveness. The vertical edge features from a
panoramic image are matched to corners with known positions from a floor plan. The edges can often be
matched in many different ways, as edge features are often not distinctive. The most likely of these possible
matchings is found by comparing the colours of the regions between each pair of vertical edges. These
colours are represented by a single value: the hue when the saturation is high, and the negative intensity
when saturation is low (i.e. when hue is not appropriate). The concise representation of colour enables many
candidate positions to be evaluated, and the most likely location for the robot to be identified.

4.5.3 Affine- and perspective-invariant descriptors

Affine- and perspective-invariant descriptors aim to describe local planar features in such a way that the
same feature viewed from different viewpoints will have similar descriptors. Usually these descriptors encode
the shape of a local image patch as a vector; and the similarity of a pair of these features is given by the
SSD between their descriptor vectors. Many proposed invariant descriptors are reviewed and compared by
Mikolajczyk and Schmid (2003). The major limitations of these descriptors for robot navigation applications
however is the high cost of extraction.

The two most popular invariant descriptors are SIFT (Lowe, 1999) and SURF (Bay et al., 2006), which
describe image patches around DoG and DoH blobs (Section 4.3.3) respectively. Scale invariance is given by
describing patches with the same size as the detected blobs, and rotation-invariance is given by orientating
these patches with the local image gradients. Both descriptors then describe the patches in terms of gradient
responses at different locations and orientations, leading to a 128-dimensional vector (by default) for SIFT
and 64-dimensional vector for SURF. As gradient responses characterise regions of a patch, they are less
affected by small perspective changes than raw image patches, while still describing the patch’s shape.
The main difference between SIFT and SURF is that SURF descriptors are typically faster to extract
(Murillo et al., 2007), although extracting them in real-time is still not feasible (Rosten and Drummond,
2006; Cummins and Newman, 2009).

Recent comparisons between SIFT and SURF have indicated that SURF has slightly better distinctiveness
when used for robot localisation (Murillo et al., 2007; Valgren and Lilienthal, 2007). Earlier comparisons
between SIFT and other proposed descriptors (Winder and Brown, 2007; Mikolajczyk and Schmid, 2003)
show SIFT to equal, or outperform other descriptors (which are often even more expensive to extract) on
simple wide-baseline matching tasks.

Although expensive to extract, SURF does provide a useful means to test whether a choice of cheaper descrip-
tor is degrading performance. A future, more efficient, invariant descriptor, or SIFT or SURF descriptors
extracted in hardware, for example on an FPGA (Se et al., 2004) or GPU (Sinha et al., 2006), would enable
the use of these descriptors for real-time applications.
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Table 4.6: Times to extract 400 features from an image sized 968× 644. Greyscale image patch features are
considerably cheaper to extract than SURF features. The time for SURF descriptors does not include the
computation of the integral image, which is computed earlier when DoH blobs are extracted.

Descriptor Time to compute (ms)
Image patch 5
Oriented image patch 9
SURF 90

Table 4.7: Performance of descriptors of detected features: proportion and distribution of features which are
repeated, and where the matching feature’s descriptor is the most similar. Simple patch descriptors are used
to describe the image around different corner features. Performance is compared to SURF descriptors. For
the small camera motion here image patches have comparable or better performance than SURF. The top
400 features from images sized 968× 644 are described. Performance measures are defined in Figure 4.6.

Detector Efficiency Match distribution Match localisation error (pixels)
FAST 47% 32% 0.66
Shi-Tomasi 53% 31% 0.64
Shi-Tomasi+subpix 48% 31% 0.54
Harris 56% 30% 0.61
Harris+subpix 50% 30% 0.50
SURF 49% 34% 0.78
Theoretical best 100% 100% 0.57

Table 4.8: Performance of descriptors of detected features: proportion and distribution of features which
are repeated, and where the matching feature’s descriptor is one of the two most similar. Significantly more
matches are found, even though these images do not appear to be particularly self-similar.

Detector Efficiency Match distribution Match localisation error (pixels)
FAST 52% 34% 0.65
Shi-Tomasi 59% 33% 0.63
Shi-Tomasi+subpix 57% 33% 0.53
Harris 62% 31% 0.61
Harris+subpix 59% 31% 0.51
SURF 51% 35% 0.78
Theoretical best 100% 100% 0.57
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4.5.4 Feature descriptor evaluation

In conclusion, many descriptors have been proposed, although few are feasible for use in a real-time applica-
tion. By far the most widely used descriptors for real-time applications are simple image patches, and it is
likely these will also be suitable for BoWSLAM.

Ideally, for recognising when two images show the same place when captured from different viewpoints,
scale-, illumination- and perspective-invariant descriptors should be used, although these are typically too
expensive to extract from every frame. For matching pairs of frames from similar viewpoints, too much
invariance could degrade matching performance.

In this section, the experiment to evaluate corner detectors described in Section 4.4.1 is extended, firstly to
parametrise image patch descriptors, and secondly to measure their performance in conjunction with different
corner detectors. These simple patch descriptors are compared with more expensive SURF descriptors, which
provide a benchmark for matching widely-spaced views.

A perfect descriptor will describe two views of an object appearing in two images as being at least as similar as
any other match to one of these descriptors. This allows us to measure the efficiency of a descriptor; we define
efficiency as the percentage of features where the most similar descriptor in the other image corresponds to
the correct matching point. It is not possible to differentiate between many identical-looking matches purely
from descriptors however, so no descriptor is likely to achieve 100% efficiency. As with repeated features,
the distribution and localisation accuracy of these efficiently-described features are measured.

Figure 4.16: Performance of patch descriptors of different sizes, centred on FAST corners. Simple RGB
coloured patches perform worse than greyscale patches of the same dimension. Performance increases are
marginal for patches sized larger than 9×9 (81D for greyscale patches or 273D for coloured patches), reflecting
the fact that some image patches do appear the same. 66% of FAST corners were detected in both images;
hence if features were not self-similar then a descriptor could achieve efficiency of 66%. Patch descriptors
are parametrised on the images in Figure 4.5 and tested on the images in Figure 4.3.

Greyscale patch descriptors are used for these comparisons. Figure 4.16 shows that they provide considerably
better efficiency for the same length of descriptor than coloured patches. Square patches sized 11×11 are used;
increasing this size gives no significant increase in efficiency, but at a cost of more expensive comparisons.
The descriptors are parametrised by a brute-force search over the parameter space, and are sub-sampled from
an area three times as large, and blurred with a Gaussian kernel with standard deviation 2. Interestingly,
the most effective area from which to extract each patch (about 33× 33 pixels) appears to be independent of
image size or patch dimension, suggesting it is a property of the size of features that are detected as corners,
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Table 4.9: Performance of rotation-invariant descriptors of detected features. Oriented patches are compared
with SURF descriptors; the oriented patches have comparable performance and better localisation accuracy.

Detector Efficiency Match localisation error (pixels)
FAST 40% 0.66
Harris 45% 0.62
SURF 45% 0.94

Table 4.10: Performance of rotation-invariant descriptors of detected features when there is a significant
change in scale (40% rather than about 10%). The repeatability of corner detectors is higher than for SURF
blobs, however the oriented patches describe features very poorly compared with SURF descriptors, as these
patches are not scale-invariant.

Detector Repeatability Efficiency
FAST 67% 3%
Harris 73% 4%
SURF 55% 36%

rather than the size of objects in the world.

The results of the comparison of patch descriptors centred on different kinds of corner is shown in 4.7. The
performance of the different corner detectors is similar, with FAST corners performing almost as well as
Harris-like corners. Comparison with Table 4.3 shows that the repeated points with the lowest localisation
errors are more likely to be efficiently described, for all descriptors. This indicates that minimising detector
localisation error is important for improving the efficiency of descriptors.

In the following chapter we consider the problem of computing camera poses when descriptors are similar
to multiple candidate features in the other image. Table 4.7 shows that including descriptors which are
correctly matched to one of the top two most similar descriptors in the other image, rather than just the top
one, significantly increases descriptor efficiency, by around six percentage points in this case, even though
the images (Figure 4.3) are not chosen to be particularly self-similar. Patch descriptors provide more correct
candidate matches than SURF descriptors in this case; the performance of SURF features is only slightly
improved by considering the second best matches.

Table 4.9 shows the performance of descriptors when images are substantially rotated; in this case the
performance of patches oriented to match the local average gradient is comparable with the performance of
rotation-invariant SURF descriptors. Descriptors which are not oriented fail entirely in this circumstance.
When scale is changed substantially however (Table 4.10), oriented patch descriptors perform very poorly,
while SURF still efficiently matches features. The poor performance of patch descriptors is due to the
descriptor rather than the detector—the detectors achieve high repeatability despite the change in scale.
This indicates the importance of choosing an appropriate invariant descriptor when changes in scale are
substantial.

4.5.5 Feature descriptor conclusions

This evaluation has indicated that for robot positioning, simple patch descriptors allow images to be efficiently
matched when changes in viewpoint are not too large. Patches centred on Harris corners make the most
effective descriptors, although patches centred on cheaper FAST corners also perform well. When substantial
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changes in scale are observed, patch descriptors are not suitable and scale-invariant descriptors should be
used; this is due to the poor invariance of the descriptors rather than the corner detectors.

This evaluation also showed the importance of localisation accuracy in efficiently describing features: boosting
localisation accuracy would potentially improve the performance of description. We also showed that features
often have multiple potential match candidates. If the correct match from these could be identified, the
number of matches found could be significantly increased.

Feature descriptor evaluation limitations

For location recognition, this evaluation is limited as it is not clear how the efficiency of features at matching
pairs of images relates to their effectiveness at finding images showing the same place from large sets of
images. As with feature detectors, the large numbers of parameter choices, and the range of possible camera
motions make choosing a detector-descriptor combination which will work well everywhere challenging.

A further limitation of this evaluation is that no distinction is made between matching nearby (e.g. con-
secutive) frames, and matching temporally distant frames. When camera motion is likely to be small, the
orientations used to orient descriptors, and the scales at which they were detected, can potentially be used
to aid matching, for example by only matching features detected at similar orientations in this situation.

The results given are exact for the six images in Figure 4.3, using the parametrisations found. The relative
performance of the different detectors is consistent between images and between different experiments, sup-
porting the significance of conclusions we draw from this experiment, however the conclusions drawn are
only relevant if the images shown reflect the images a robot will encounter. Clearly these conclusions are not
true for all images, for example on the images captured by Rosten et al. (2010) of an artificial environment,
the FAST detector is shown to be more repeatable than other detectors. None of the other review papers
discussed address this limitation.

4.5.6 Matching descriptors

Given descriptors extracted from two frames, we aim to identify matches between descriptors in one and
descriptors of similar-looking features in the other. Two images containing many similar descriptors are likely
to show the same objects and hence may show the same place. For camera positioning, matches between
feature locations are also needed, in this case the reliability of matches is important as well: sufficient correct
matches must be found that camera motion can be computed efficiently (the identification of a set of correct
matches from sets of candidate matches contaminated with gross outliers is analysed in detail in Chapter 6).

When the frame-rate is high, and camera motion is smooth, tracking is likely to be an efficient and effective
way to find matches between consecutive frames. A feature detected in one frame is tracked into subsequent
frames, by using its previous motion to predict where in the new frame it will lie. Either the region around
each predicted feature location can be systematically searched (Davison, 2003), or descriptors of each detected
corner in this region can each be compared to the descriptor of the tracked corner to find the closest match
(Nistér et al., 2006; Klein and Murray, 2007). Alternatively, the point where an image patch is best aligned
with a subsequent frame can be found by gradient-descent (Lucas and Kanade, 1981). Tracking is not always
possible however; for example when a robot re-visits a region, images captured from substantially different
viewpoints must be registered. Matching is also needed when tracking fails due to motion blur, occlusion by
moving objects, or erratic camera motion.

The aim of wide-baseline matching algorithms is to find the most similar match to each descriptor out of all
of the descriptors in the other image (Lowe, 1999). To improve the quality of these matches, matches can
be rejected if there are multiple similar candidates in one image, i.e. the similarities of the best and second
best candidates are within some threshold, for example 20% (Brown et al., 2004; Nistér et al., 2006).

To find these matches, all possible pairs of descriptors can be compared (a ‘brute-force’ approach). This is
feasible for small numbers of descriptors which can be compared cheaply, however it becomes costly for larger
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numbers of descriptors. If C descriptors are extracted from each image, C2 comparisons will be needed. For
example, finding matches between two sets of 300 121-dimensional image patch-descriptors, compared by
SSD, takes 50 milliseconds, but comparing 100 from each image takes only 6 milliseconds.

A more efficient method for comparing large numbers of high-dimensional descriptors is to use a kd-tree
(Beis and Lowe, 1999). A kd-tree is a balanced binary tree to which descriptors are added. At each node
descriptors are partitioned into two sets by thresholding one component of the descriptor, this is repeated
at a fixed number of levels. The splitting points are chosen from training data so that the component with
the highest variance is split about its median. This strategy ensures that the tree will be approximately
balanced, and that similar descriptors are likely to end up at nearby leaves.

To use a kd-tree for matching, the descriptors from one image are first added to the tree. To find a match to
a descriptor from the second image, its corresponding leaf node is found. This descriptor is now compared
to other descriptors at this leaf. Other leaves that are nearby in the tree are then considered in turn, until
some fixed number of leaves have been checked. The most similar descriptor which has been found is very
likely to be the most similar overall, and typically only a small number of comparisons are needed, speeding
up matching. kd-trees are most likely to find the correct match when one descriptor is significantly more
similar than others (Lowe, 2004); these tend to be the most reliable matches.

4.6 Conclusions

In conclusion, appropriate descriptors and detectors for real-time robot positioning are simple greyscale
image patches centred on FAST or Harris corners. These descriptors can be extracted cheaply, and for
simple camera motion with limited changes in scale they are as-good or better at describing frames than
more expensive invariant descriptors such as SURF.

These descriptor and detector combinations are also likely to be as suitable as other simple descriptors
for location recognition when changes in scale are small, however in general scale-invariance is likely to be
necessary.

Initially, high-resolution images and larger patches should be used to evaluate and demonstrate the capa-
bilities of BoWSLAM, however both of these parameters could potentially be reduced a certain amount to
reduce computational costs, with potentially only a small drop in performance.

A minimum separation constraint on features appears to degrade repeatability for all detectors, however many
authors have used similar constraints for robot navigation (Strasdat et al., 2010; Mei et al., 2009; Newman
et al., 2009), suggesting that in practice this may be necessary, especially when the overlap between matched
frames is low.
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Chapter 5

The Bag-of-Words algorithm for robot

localisation

Abstract

Many schemes have been proposed to recognise when two images show the same place. Of
these schemes, the most efficient, and some of the most successful, are those based on the Bag-
of-Words (BoW) algorithm. The BoW algorithm represents the descriptors extracted from an
image as a set of ‘image words’ from a discrete ‘dictionary’.

In this chapter, location recognition schemes are reviewed, and the BoW model is described
in detail. A new BoW scheme based on the approach of Nistér and Stewénius (2006) is pro-
posed. The new scheme creates a hierarchical dictionary of image words online from the features
which are observed. This retraining scheme is shown to be more efficient than previous schemes
which build dictionaries online. Performance comparable with other contemporary schemes is
demonstrated on a standard dataset, and in a pedestrian navigation experiment.

5.1 Introduction

Eventually a robot travelling in an unknown environment will re-visit somewhere it has been before. This
event is known as loop closure. If the robot is positioning itself by dead-reckoning (by accumulating incre-
mental position estimates from its sensors, rather than from a absolute positioning sensor such as GPS) then
detecting loop closure events is essential for long-term positioning, otherwise accumulated errors will even-
tually render any position estimate useless. Loop closure also improves the accuracy of the robot’s map, as
accumulated errors in the map can be corrected around loops, and is needed to ensure that a consistent map
is maintained, where each area is mapped once only. In addition, loop closure detection is the only way that
an autonomous robot can resume navigation following gross errors or disorientation. Loop closure events
must be detected reliably however, as incorrectly detected loops have the potential to corrupt a robot’s map
and/or its position estimate (Bailey and Durrant-Whyte, 2006).

Sometimes a robot will know approximately where it is, and can use this information to help identify when
loop closure will occur, and where it is in its map (e.g. Cole and Newman, 2006; Bosse and Zlot, 2008). Often
however, the robot will not know where in the map it could be, because significant errors have accumulated
in its position estimate since it last visited the area, because of significant distortions or uncertainties in its
map (particularly if the map still consists of disconnected or weakly connected components), because of gross
errors in its position estimate, or because of unobservable motion (the ‘kidnapped robot’ problem (Thrun,
2002); for example a domestic robot that is moved while switched off). In these circumstances the robot
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must actively search much or all of the map for its current location; this is known as active loop closure
detection.

If a robot can predict approximately where in the map loop closure will occur, then loop closure detection
simply involves matching current observations with observations made when mapping this region. For
example, a wheeled robot in an approximately planar indoor environment, and navigating using a 1D laser
scanner, can search the region of its map where it believes it may be for the place where the current scan is
best aligned with the previous scan (Folkesson and Christensen, 2007; Zhang and Ghosh, 2000). Alternatively,
a robot observing a small set of landmarks (for example a small number of image features observed by a
camera) can iterate over possible correspondences between these landmarks and landmarks in the map, and
select the most likely alignment, via an algorithm such as Joint Compatibility Branch and Bound (JCBB;
Neira and Tardos, 2001), however JCBB has exponential complexity in the number of landmarks, and is
only practical for searching small regions of a map (Civera et al., 2009b).

For active loop closure detection, more efficient methods are needed to search the map. One sensor which
enables a robot moving on a plane to localise itself in its map efficiently is a laser scanner: the map may
be searched by encoding local scans as distinctive descriptors (histograms of gradients), then by comparing
these descriptors with a descriptor of the current scan (Bosse and Roberts, 2007).

An additional requirement for loop closure detection is that sufficient information is collected to distinguish
between different parts of a map, and to make it unlikely that regions that have not been mapped will be
matched to mapped regions. This is challenging in most environments due to different places appearing
similar, and due to places changing between visits. These changes include objects such as vehicles, furniture,
etc. moving around, and, in the case of computer vision, include changes in illumination. Laser scans are
often limited in the amount of distinctiveness they contain, for example many loop closure opportunities
will be missed in some outdoor environments (Bosse and Zlot, 2008). In typical indoor environments each
laser-scan of right-angle walls and doors could potentially be matched to many different places in the map,
although this can sometimes be resolved by making more observations (Zhang and Ghosh, 2000).

One sensor that more often provides the distinctiveness needed is a camera. Cameras are ideal for detecting
loop closure as they captures rich and distinctive information about the environment. Enough objects are
typically viewed in a scene that small changes can be neglected, and the strong geometric constraint that the
two images show much of the same static 3D structure adds to the distinctiveness (Cummins and Newman,
2009; Konolige et al., 2009).

Numerous schemes have been proposed for recognising when two images show the same place. A selection
of these schemes, and their use for robot localisation, are described in Section 5.2. Particularly efficient
and effective are those schemes based on the Bag-of-Words (BoW) algorithm, described in Section 5.3. Our
new BoW scheme for robot localisation, based on these existing schemes, is described in Section 5.4, and
validation results for the new scheme are presented in Section 5.5.

5.2 Feature-based location recognition

This section describes contemporary schemes to detect when two images show the same location. These
schemes all build on the image feature detection and description techniques discussed in the previous chapter.

Two images with many similar-looking descriptors in common are likely to show the same objects, and hence
are likely to show the same location. This allows a robot to be localised by extracting descriptors from an
image it captures, then searching all previous images for an image containing many similar features.

Finding matching features is not always sufficient for reliable loop closure detection however, as similar-
looking objects occur in different locations. Possible matches can be validated by considering the 3D structure
of the scenes: once two matching images are found, a geometric test may be used to determine whether a
significant proportion of these matched features could have arisen from the same static 3D scene.
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In the case of a robot moving on a plane, that visits approximately the same position in the environment
every time it visits that location, a simple geometric test is that correctly matched features will have the same
configuration in matching images. This works well in the case of a robot moving through a densely-mapped
environment, for example a car driving along road which has been mapped at regular intervals (Cummins
and Newman, 2009).

For a camera moving in three dimensions, matched frames could contain features in a wide range of configu-
rations. These configurations are constrained by the epipolar geometry of the scene, which is defined by the
relative pose of the camera when the images were captured (and is discussed in detail in the next chapter).
Methods for computing the epipolar geometry of the scene provide a strong constraint for validating detected
loop closure events: if two frames have many features in common, and the relative pose of two cameras can
be computed from these feature matches, then the images are likely to show the same objects and the same
3D structure, so are likely to show the same place.

An alternative way to increase the reliability of feature-based loop closure detection is to require that a
sequence of images matches a sequence of previously captured images. This method is used by Newman
et al. (2006) to reduce the chance of false loop closure detection when visiting areas with repeating archi-
tecture. Their method depends on a robot following a previously-travelled route through a densely mapped
environment however, otherwise loop closure events may be missed.

For some applications, if only a small number of previous frames could possibly overlap with the current
frame, searching for matches between descriptors extracted from each of these frames is feasible. For example,
Mahon et al. (2008), who position an AUV using SLAM, detect loop-closure by matching SURF descriptors
from the current image with descriptors from frames around the region in the map where their AUV is believed
to be. When sufficient matches are found, and the epipolar geometry of the scenes are compatible, loop
closure events are detected. This scheme robustly detects loop closure events in an underwater environment,
despite small changes in the scene, for example moving starfish (Johnson-Roberson et al., 2010).

Valgren and Lilienthal (2007) capture images of 40 outdoor locations at five different times of the year with
a panoramic camera. SURF descriptors from these images are matched with frames captured as a mobile
robot explored the same environments. The robot was correctly positioned up-to 90% of the time without
using any geometric constraints, despite large changes in foliage, snow cover, cloud cover and illumination,
however the image description and brute-force search takes a few seconds to search for the correct location
even in this limited dataset.

Probably the largest-scale demonstration of the use of computer vision for location recognition is IM2GPS
(Hays and Efros, 2008): six million GPS-tagged images are harvested from the internet, showing a massive
range of locations (often tourist destinations) from around the world. 16% of query images are localised to
within 200km of the query image’s location; this is considerably higher than would occur by chance. These
images are represented by a range of descriptors, including 3D colour histograms, descriptors of texture,
SIFT-like systematically-sampled GIST descriptors, and tiny thumbnails, and these descriptors are shown
to be complementary. This is not a real-time system however; image description took 15 seconds per image,
and each query image was compared to every other image’s description (which is not infeasibly slow when
low-dimension descriptors are used). This task is somewhat different to most robot localisation tasks; as it
involves categorising regions rather than providing precise locations within those regions.

While these schemes demonstrate the potential of computer vision for robot localisation, they are limited by
their high computational cost. To effectively identify pairs of images with many descriptors in common, a
more efficient approach is to use the BoW algorithm, which is described in the following section.

5.3 The Bag-of-Words algorithm

The Bag-of-Words (BoW) image representation is a concise method to represent an image by the set of
feature descriptors that it contains, which allows images to be compared efficiently (Sivic and Zisserman,
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Figure 5.1: To represent an image as a BoW, each descriptor is mapped to the nearest image word (the
cluster centres found previously). For each image typically 300 features are mapped to about 150 image
words, out of a total of tens or hundreds of thousands.

2003). Each feature extracted from an image is mapped to its closest match from a quantised ‘dictionary’ of
‘image words’—a discrete set of representative features (also known as a ‘codebook’ or ‘vocabulary’). These
image words are analogous to written words, where each describes a particular class of features in an image.
Image words might represent ‘window corners’, ‘gravel’, ‘leaves’, for example, and all descriptors arising from
one of these features in the world should be mapped to the corresponding image word. Figure 5.1 illustrates
how an image is represented as a BoW.

This dictionary of image words is chosen with the aim that the same feature viewed in multiple images
should map to the same image word each time, and that different-looking features should map to different
image words. Two images with many image words in common contain many similar-looking features, and
therefore are likely to show the same place. These matches can be found very rapidly as comparing images
consists simply of comparing their BoW representations, which are essentially sparse vectors of each word’s
frequencies.

A suitable dictionary of image words can be found by clustering descriptors extracted from a training set of
images, so that each cluster corresponds to a particular class of features which should be described by the
same image word. The cluster centres are then used as image words. To cluster the training set into image
words an algorithm such as Lloyd’s algorithm for k-means clustering is used (as described in more detail in
Section 5.4 and Figure 5.6).

Some image words are more useful than others for identifying if two images show the same place (for example
many images in the dataset shown later in Figure 5.16 contain image words describing windows and stairs,
but only a few contain a vending machine, therefore two images containing words describing the vending
machine are likely to show the same place). To take this distinctiveness into account the images’ word-
frequency vectors can be weighted with a measure of the words’ distinctiveness, for example the heuristic
Term Frequency-Inverse Document Frequency (TF-IDF) score defined as:

wi = log
T

Ci
(5.3.1)

where wi is the weight of image word i calculated from T , the total number of images, and Ci the total
number of images where image word i occurs (Nistér and Stewénius, 2006). As the words used, and their
TF-IDF weights, are calculated from the training images, it is important that the images in the training set
are representative of places the robot will explore.
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Figure 5.2: Hierarchical clustering: descriptors (image patches in this case) are clustered into a small number
of large clusters using a fast approximate clustering algorithm. Each cluster is then clustered again into
smaller clusters. Typically this is repeated at about six levels; an example of clusters at the bottom three
levels is shown here—the descriptors on the left are clustered into three smaller clusters, each of these smaller
clusters is clustered again (the first of these is clustered again into the three smaller clusters shown in the
centre), then each cluster is clustered again; the first one gives the six clusters shown on the right. Each of
these cluster’s centres forms an image word.

The most similar images to a query image are found by iterating through the BoW database and comparing
each image’s weighted word-frequency vector with that of the query image. The images with the most
similar weighted word-frequency vectors are most likely to show the same place. Recognition accuracy is
high despite geometric information being ignored, and results are robust to small changes in the scene, due
to the large number of features that are compared.

The image BoW algorithm was originally developed from document-search techniques by Sivic and Zisserman
(2003). Documents with many words in common are likely to describe the same topic, this is analogous to
images with many features in common being likely to show the same location. Sivic and Zisserman describe
frames from a movie using SIFT, then represent these as a BoW. A user can query this BoW database with
an image to find the frames with features in common. This list is retrieved efficiently using an ‘inverse file’;
a lookup table mapping image words to the frames that contain them, so that the number of comparisons
between word vectors are limited. The top matches are refined by requiring that nearby features in the query
image are also spatially nearby in the retrieved image. A lists of frames showing the same location as the
query frame is then returned.

The dictionary used in many BoW schemes is generated by a k-means clustering of a large subset of the
descriptors. Once generated, the most-frequent and least-frequent image words are suppressed; this is anal-
ogous to search engines ignoring the most common words in documents, such as ‘the’, ‘a’, ‘and’, which are
not useful for characterising a document’s contents.

5.3.1 Hierarchical Bag-of-Words dictionaries

A drawback of schemes like that of Sivic and Zisserman (2003), where potentially millions of descriptors are
clustered into thousands of image words, is the high cost of clustering, which can take many hours. Once
the dictionary is built there is also the problem of efficiently finding the closest image word to a particular
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descriptor. To solve this second problem Nistér and Stewénius (2006) propose a hierarchical dictionary: the
training set is clustered into a small number of image words, then each cluster is recursively clustered into
a small number of smaller clusters (Figure 5.2). This is repeated until a sufficient number of image words
is found (for example 105 image words if descriptors are clustered into ten subsets at each of five levels).
Hierarchical clustering is more efficient than clustering once only, as descriptor sets are clustered into a small
number of subsets each time. Assigning a descriptor to the closest image word is fast: the closest centre at
the top level is found, then the closest centre from its child clusters is found, etc. until the closest image
word is found at the bottom level.

The scheme by Nistér and Stewénius (2006) extracts MSER affine-invariant features from each image, then
extracts SIFT descriptors oriented with the local gradient at each MSER. The costs of representing frames
as BoWs is negligible compared with the cost of extracting these features. To find matches to a query image,
the sum of absolute differences (SAD) distance between TF-IDF-weighted vectors is used, with an inverse
file used to speed up queries. To test this system, a database of four images of each of 1594 objects is used
(now forming part of the University of Kentucky dataset shown in Figure 5.3). With each image used in turn
as a query image, the proportion of times that the top four matches returned are correct is used to measure
retrieval performance. This dataset is used to demonstrate that increasing the number of words increases
recognition performance, with dictionaries of up to 10 million words tested. A higher branch factor (fewer
levels in the hierarchical dictionary) results in slightly better performance, but at the expense of increasing
the costs of indexing images. The system is also demonstrated recognising images from a database of one
million frames, demonstrating that schemes like this are scalable to any environment a robot is likely to
need to localise itself in. The stereo camera SLAM scheme by Konolige et al. (2009) uses a hierarchical
BoW scheme based on this scheme to reliably close loops in trajectories of several kilometres, in indoor and
outdoor environments; a geometric test is used to reject false matches.

To avoid the drop in performance from quantising the dictionary at several levels, Jegou et al. (2008) cluster
a training set of descriptors into 200,000 words, then cluster the centres from the first clustering into a
smaller number of centres. This is repeated several times, resulting in a hierarchical dictionary which is built
from the bottom up. When images are indexed, borderline features are mapped to multiple image words,
so that matches between features which happen to fall in neighbouring clusters are not missed. Clustering
is considerably more costly, however images can be indexed with comparable speed. Performance on the
University of Kentucky dataset (Figure 5.3) is slightly lower than Nistér and Stewénius (2006), however the
scheme outperforms other schemes on a building identification task (Philbin et al., 2007).

5.3.2 Bag-of-Words schemes for image categorisation and object recognition

The BoW model is frequently-used for the related problem of scene categorisation (e.g. Li and Perona,
2005; Csurka et al., 2004). These schemes apply machine learning techniques (including LDA, described in
Section 9.2.1) to image’s BoW representations in order to identify patterns of co-occurring features which
define a small number of categories of scene (e.g. ‘mountains’ or ‘forest’). While not directly related to robot
localisation, these techniques do demonstrate how probabilities can be calculated from BoW-represented
images. Both schemes try using näıve Bayes classifiers to estimate the probability of observing a particular
set of words; the näıve Bayes assumption is that word occurrences are independent. The probability of each
word occurring if an image belongs to a category is estimated from the number of times the word occurs in
training images from that category. By Bayes theorem, the probability of an image belonging to a category is
proportional to the product of the probabilities of observing each word. As the set of features observed in an
image, or in training data, is generally incomplete (as features which could be observed will often be missed)
any Bayes updates must be damped, for example by Laplace smoothing (Csurka et al., 2004) or a similar
technique (Cummins and Newman, 2008a), and negative observations (not observing a particular word) are
ignored. These precautions prevent the probabilities of images showing the same place from growing to 1,
if an image contains a word found in all training data, or 0, if an image contains a word not found in any
training data, or if the training data contains a word not found in the image.
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Figure 5.3: Example images from the University of Kentucky dataset for validating the performance of BoW
schemes, from Nistér and Stewénius (2006). The database shows four images of each of 2550 objects or
scenes. Given one of the images, a good BoW scheme will return all four matches, so the average number of
correct matches in the top 4 is a good measure of a scheme’s performance.
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In addition to a Bayes classifier, Csurka et al. (2004) try using a Support Vector Machine (SVM) to categorise
images BoW representations, which are treated as vectors. SVMs are machine-learning techniques suitable
for partitioning sets of high-dimensional vectors into different clusters, maximising the dissimilarity between
clusters. While not really suitable for robot localisation (the SVM would have to be trained for each
of the large number of images a robot may observe), the higher performance of this heuristic method,
compared to the much-cheaper näıve Bayes classifier, does indicate that the damped estimates of word-
occurrence probabilities inaccurately reflect their true values, or that word co-occurrences are important.
Both schemes use k-means-clustered dictionaries limited to just a few hundred or thousand words, in order to
limit computational costs, even though small improvements in performance come with increasing the number
of words. Li and Perona (2005) compare the performance of image patch descriptors and SIFT descriptors,
and conclude that when sampled systematically from the image, both have comparable performance, although
with just 156 words, the clusters of patches, or of 128D SIFT descriptors, are unlikely to reflect the true
range of features from the training sets.

Uijlings et al. (2009) describe a BoW scheme using k-means to cluster SURF descriptors, and find an SVM
to perform well for detecting object instances within scenes (for example ‘car’ or ‘chair’). They observe that
SURF descriptors are considerably cheaper to compute on a systematic grid, as a pyramid of integral images
can be used, and that this systematic sampling performs well for categorisation. Their scheme won the 2008
PASCAL Visual Object Class recognition challenge (Everingham et al., 2008), for identifying instances of
one of twenty classes of objects in images. For this task, a relatively small dictionary of 4096 descriptors was
sufficient.

5.3.3 Bag-of-Words schemes for robot localisation

The BoW algorithm’s ability to allow large image databases to be searched has since been used widely
for robot localisation. One such scheme is described by Cummins and Newman (2008a). SURF descrip-
tors extracted from omnidirectional images are k-means clustered into around 11000 words, and a kd-tree
(described in Section 4.5.6) is used to match descriptors to these image words. Given a query image the
probability of a correct match with each frame is computed. Calculating these probabilities using a näıve
Bayes assumption that word co-occurrences are independent is simple and reasonably effective, but slightly
better results are given by considering the strongest co-occurrences between image words. From the train-
ing data a complete directed graph of the co-occurrence probabilities of all the image words is constructed
and the (approximate) maximum-weight spanning tree (Chow Liu tree) of this graph is found. The prior
probability of observing a particular distribution of features anywhere can now be calculated approximately
by accumulating the probabilities of observing each image word, conditional on whether its descendent in
the Chow Lie tree occurs. These probabilities appear more reflective of the true probability of observing a
particular bag-of-words than those calculated using a näıve Bayes assumption. The probability of observing
a particular word-bag conditional on a previously viewed scene from the BoW database being viewed can
then be computed for each location using a näıve Bayes independence assumption. From these probabilities,
Bayes theorem gives the probability of the query image showing the same place as the database image.

The scheme by Cummins and Newman (2008a) is tested on loops of a few kilometres; at each location the
image most probable to show the same location as the current image is found, subject to this probability
exceeding some threshold. When under 30% of images are matched, the false-positive rate is zero on the
datasets which are presented, indicating the power of the BoW model even when no geometric information
is taken into account.

Cummins and Newman (2009) describe an optimised version of their previous scheme, which uses a inverse file
in order to minimise the number of candidate matches to consider. This scheme is applied on an impressively
large scale: loop closure events are accurately detected in a database of over 100,000 frames collected over
hundreds of kilometres, captured from a panoramic camera mounted on a car. A dictionary of 100,000
words is shown to significantly outperform a smaller dictionary. A geometric consistency check is used to
validate that matched images show the same 3D structure; an assumption that the car is in approximately
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the same location is used. 8% of images are matched, with 1% of these matches false positives, however the
distribution of these matches is not uniform, with no loop closure events detected on one 50km stretch of
road when illumination conditions changed between two visits. This scheme is used to successfully detect
loop closure events in the stereo camera SLAM scheme by Sibley et al. (2010) over tracks up to 121km in
length, and on a smaller scale by Newman et al. (2009).

The schemes described so far all build dictionaries off-line, usually by k-means clustering of descriptors from
a training set (Nistér and Stewénius, 2006; Newman et al., 2006; Sivic and Zisserman, 2003; Li and Perona,
2005). Finding a training set representative of all environments a robot will explore may not be possible
however, and there is always a risk that a robot may enter an environment containing features which are
not represented by the training set. An alternative approach is to dynamically construct a dictionary from
the features which are encountered as the environment is explored, so that environments with features not
represented in the training set can be recognised effectively. Such a scheme is described by Filliat (2007):
when features are observed which differ significantly from any previously-observed features, these features
are added as new words. This scheme works well on the scale of a few rooms in a building, but performance
is limited by the continual dictionary growth. Angeli et al. (2008a) extend this scheme to add incrementally-
calculated TF-IDF weights, to use an inverse file to improve query times, and to estimate the probability
that the robot is exploring a new region. This system closes small loops indoors, although real-time (1Hz)
performance is limited to about 2000 images.

Similar schemes by Eade and Drummond (2008) and Nicosevici and Garca (2009) also initialise new words
dynamically and add them to a dictionary, although in all of these cases the number of words used is of the
order of a thousand; orders of magnitude less than schemes working on larger scales (Nistér and Stewénius,
2006; Sivic and Zisserman, 2003; Cummins and Newman, 2009)

SIFT and SURF are the most popular descriptors for BoW scene recognition, used, for example, by Nistér and
Stewénius (2006); Newman et al. (2006); Cummins and Newman (2008b); Angeli et al. (2008a,b); Csurka et al.
(2004); Li and Perona (2005); Filliat (2007); Eade and Drummond (2008); Nicosevici and Garca (2009); these
SIFT and SURF descriptors should allow the recognition of scenes independently of the robot’s viewpoint.
When these schemes are used for robot localisation they typically index images at around 1Hz (Cummins
and Newman, 2008b; Angeli et al., 2008b); this framerate allows dense mapping of the environment, while
limiting the cost of extracting SIFT or SURF features. When used for loop closure detection in single camera
SLAM, BoW is usually run in isolation on a subset of frames (Eade and Drummond, 2008; Newman et al.,
2006, 2009), with the occasional position update provided when a good loop closure candidate is found.
Strong viewpoint invariance is not always necessary for recognition however, as often a robot will visit a
location which is very close to where it was previously. Cummins and Newman (2008b) impose a geometric
constraint which is only valid when the robot is near to its previous location, and Li and Perona (2005) show
that simple image patches with little viewpoint-invariance have comparable performance to SIFT features
for characterising images, even when the scales of objects in images within categories clearly vary.

5.3.4 Summary of scene-recognition research

Section 5.3.3 described several schemes which demonstrate the power of cameras as robot localisation sensors.
No prior knowledge of a robot’s position is needed to reliably recognise a region it has seen earlier. Of these
schemes, those using tens or hundreds of thousands of image words are the most successful at scaling to large
environments, and the most feasible way to build these large vocabularies is to use hierarchical clustering.
Matches found by these schemes are occasionally incorrect, however by filtering results to check that the
geometry of matched scenes is compatible, these errors can usually be eliminated. A limitation of these
large scale schemes however is that they will only work well when training data is representative of the
environments being explored. Alternative approaches attempt to build dictionaries incrementally, however
these are limited to considerably smaller dictionaries with around a thousand words.

While the previous robot localisation schemes discussed use SIFT or SURF descriptors centred on blobs,
schemes for categorisation and image search applications indicate that systematically sampling features and
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Table 5.1: Notation used in this chapter.

N Number of descriptors to be clustered
k Number of clusters (branch factor in hierarchical dictionary)
D Descriptor length
I Number of Lloyd’s algorithm/PAM iterations
C Number of CLARA iterations
S CLARA subset size
δ(i, j) Arbitrary distance function between descriptors i and j (a measure of their similarity)
δSSD(i, j) Sum of squared differences between descriptors i and j (a measure of their similarity)
ai Index of closest cluster centre to descriptor i
c1, ...ck k cluster centres
f Retraining occurs when the total number of descriptors increases by a factor f

describing them with a range of descriptors of shape and colour may give better performance.

Some schemes explicitly estimate the loop closure probability (Angeli et al., 2008a; Cummins and Newman,
2008a, 2009), although it is not clear how to accurately estimate word occurrence probabilities. Other
schemes achieve high levels of accuracy with heuristic measures of relative image similarity (Newman et al.,
2006; Nistér and Stewénius, 2006; Filliat, 2007).

5.4 A new BoW scheme for robot localisation

5.4.1 Requirements

In this section, a new BoW scheme for robot localisation is developed, which is based on the schemes
described in the previous section. The BoW scheme allows large dictionaries to be constructed as the robot
explores, so that robots can learn to recognise large environments without needing appropriate training data.
Preliminary work on this scheme was described by Tom Botterill et al. (2008).

The scheme is developed to meet the following requirements:

• Fast enough for extended real-time operation.

• Large enough vocabulary for robust recognition in large environments.

• No requirement for appropriate training data to be found for each environment which is to be explored.

The scheme best satisfying the first two criteria is the scheme by Nistér and Stewénius (2006), due to the
hierarchical vocabulary (Figure 5.2), which supports a large dictionary while enabling fast and efficient
mapping of features to the closest image word. A limitation of this scheme is the cost of extracting invariant
descriptors, which may be necessary to match widely spaced views, however image patches are much cheaper
to extract, and perform as well in many circumstances (as shown in Section 4.5.5).

Several schemes have been proposed which satisfy the third criteria (Eade and Drummond, 2008; Nicosevici
and Garca, 2009; Filliat, 2007; Angeli et al., 2008a), however these all build small non-hierarchical dictionaries.
Ideally, a large hierarchical dictionary would be built incrementally. Clustering schemes used for building
large dictionaries are too slow for online use however, typically taking several hours or days (Nistér and
Stewénius, 2006; Cummins and Newman, 2008a; Sivic and Zisserman, 2003).
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5.4.2 Design of a BoW scheme supporting dynamic retraining

This section describes our new BoW scheme, which is based on the scheme by Nistér and Stewénius (2006),
but creates an appropriate dictionary dynamically from the data which is observed, rather than offline from
training data. Notation used is summarised in Table 5.1.

The simple method used to create a dictionary dynamically is to periodically cluster all of the descriptors
which have been observed so far into a new dictionary, which replaces the old dictionary. Lloyd’s algorithm
for k-means clustering would be too slow for retraining dynamically in this way, so a faster clustering scheme
is required.

In order to speed up the creation of the dictionary, we use the observation that when creating a hierarchical
dictionary, the costs of clustering are dominated by clustering large number of descriptors (thousands or
millions) in to a small number of centres (e.g. ten or less). In this case, centres chosen by clustering a
small random subset of the descriptors, for example less than one hundred, usually define suitable clusters
for the entire set (Kaufman and Rousseeuw, 1990, illustrated in Figure 5.4). This observation reduces the
time needed to generate an effective dictionary to just a few seconds or minutes, allowing new dictionaries
to be created dynamically. For robot localisation the clustering takes place in a separate thread. When a
new dictionary and BoW representations are created, the previous dictionary is seamlessly replaced.

The CLARA algorithm (Clustering LARge Applications, Kaufman and Rousseeuw, 1990) is a simple scheme
for clustering large sets in this way, outlined in Figure 5.5. Several small random subsets are each clustered
into k clusters. Of these clusterings, the best clustering for the whole set is chosen. This avoids the occasional
poor clusterings that can occur when clustering subsets.

Many previous schemes use k-means clustering to generate dictionaries, and this is suitable for clustering
subsets as well. However, as only small subsets are being clustered, the computational cost of clustering is
dominated by assigning descriptors to cluster centres, rather than by the clustering algorithm used to cluster
subsets. In this case any clustering algorithm can be used.

Given N vector-descriptors, v1, ..., vN , a k-means clustering algorithm aims to find k vectors (cluster centres;
c1, ..., ck) which minimise the total squared Euclidean distance between descriptors and their closest centres.
This is referred to as the residual; a high residual indicates a poor clustering.

Residual =

N
∑

i=1

‖vi − cai
‖22 (5.4.1)

where ai ∈ 1, ..., k is the index of the closest centre to vector vi. A popular algorithm for k-means clustering
is Lloyd’s algorithm, a simple version of which is outlined in Figure 5.6. The simplest version of Lloyd’s
algorithm has complexity O(DIkN) where D is the cost of comparing two descriptors (their length), and I
is the number of iterations (in practice low, but at worst exponential in N ; Vattani, 2009). Lloyd’s algorithm
is fast in practice, but can converge to false minima (Kanungo et al., 2002), particularly with a poor choice
of initial centres. ‘Swapping heuristics’ where some cluster centres are moved to where centres appear to be
missing can reduce this problem, but current algorithms still converge in exponential time in the worst case
(Kanungo et al., 2002). A further limitation of k-means clustering is that the residual which is minimised
is the sum of squared differences (SSD), which is not necessarily a good metric with which to compare
descriptors, in particular histograms. A wide range of distance measures are used to compare histograms,
many of which are described by Shahrokni (2004); Brunelli and Mich (2001). Of these, one of the most
popular is the Chi-squared distance, used by Filliat (2007) and Hays and Efros (2008) for example, which is
an estimate of the probability that two histograms represent data drawn from the same distribution.

One algorithm addressing the problem of appropriate distance measures, and including a systematic swapping
heuristic to ensure all points are considered as centres, is the Partitioning About Medoids, or PAM, algorithm
for k-medoids clustering, proposed by Kaufman and Rousseeuw (1990). A k-medoids clustering algorithm
finds a subset of k of the N descriptors which form cluster centres. The PAM algorithm chooses k centres
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(a) Aim is to find k=3 clusters from N=40 de-
scriptors (blue).

(b) Choose a random subset (red) of S=10 de-
scriptors.

(c) Cluster random subset into k=3 clusters
(cluster centres are marked green).

(d) These k=3 centres are often good centres
for clustering the entire dataset (the clusters
they define are circled).

Figure 5.4: Illustration of one iteration of CLARA clustering: 40 points in 2D space are clustered into 3
clusters by clustering a subset of size 10. When a large number of points are being clustered into a small
number of clusters, clustering a small random subset is likely to give a good overall result. Repeating this
with another random subset (including the centres found so far) often improves the clustering.

Input: N descriptors, k: number of centres, C: number of CLARA iterations, S: subset size. k ≪ S.
Ideally S ≪ N
Output: {c1, c2, ..., ck}: List of k descriptors forming good cluster centres

Randomly choose S descriptors:

Cluster these S descriptors into k clusters

Repeat C times:

Randomly choose S-k descriptors:

Cluster S-k descriptors, plus the k best centres found so far, into k clusters

Remember centres with lowest total residual so far

Return centres with lowest total residual so far

Figure 5.5: CLARA: Clustering for LARge Applications algorithm for clustering a large number (N) of
descriptors into a small number of centres, k.
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Input: N vector descriptors, k: number of centres I: number of k-means iterations
Output: c1, ..., ck: Set of k vectors forming good cluster centres

Choose k initial cluster centres (e.g. randomly)

Repeat for I iterations or until no change in assignment:

Assign every descriptor to closest centre

Replace each centre with mean of descriptors assigned to it

Figure 5.6: Lloyd’s algorithm for k-means clustering (many variations exist)

which minimises the following residual:

Residual =

N
∑

i=1

δ(i, ai) (5.4.2)

for any measure of distance, δ, where ai ∈ 1, ..., N is the index of the closest centre to descriptor i. The PAM
algorithm, outlined in Figure 5.7 and illustrated in Figure 5.8, first computes all pairwise distances between
descriptors, then makes an initial guess for the cluster centres. This initial guess is refined by finding pairs
of centres and non-centres which lower the total residual when swapped. The swapping heuristic works well
in practice; typically few iterations are needed (although worst-case performance is unknown). Each time
the ith centre is swapped, the current k-subset of centres is replaced by the k-subset with the lowest residual
out of any k-subsets which can be constructed by replacing centre i with a different descriptor. Although
PAM’s complexity of O(IkN2 +DN2) is higher in N than Lloyd’s algorithm, it is still feasible for subsets
of thousands of descriptors, which is larger than is needed (Section 5.4.4).

Kaufman and Rousseeuw (1990) suggest than only descriptors forming a metric space can be k-medoids
clustered, although the algorithm they describe will find a clustering for any distance function1. Every time
the set of centres is updated the total residual decreases, and as there are a finite number of sets of centres
the algorithm will always converge to a minimum (although possibly a local minimum).

Note that clustering may not be necessary to generate a dictionary; Nowak et al. (2006) found that a random
selection of descriptors may be used as a BoW dictionary. A random set of descriptors provides a suitable
benchmark for verifying that clustering is worthwhile at all.

Other large scale BoW schemes (Cummins and Newman, 2009; Nistér and Stewénius, 2006; Sivic and Zis-
serman, 2003) use an inverse file to speed up queries. This is a lookup table used to map words in a query
image to a list of images containing that word, minimising the number which need to be searched. Managing
the memory use of inverse files is challenging however, and sparse vector comparisons between dissimilar
BoW representations are fast (and in practice can be stopped early if few matches are found). We have not
implemented an inverse file as queries are currently considerably faster than retraining costs, and rebuilding
the inverse file when retraining occurs would add to these retraining costs. If the cost of searching the
entire database became too great however, an inverse file could be implemented. Alternative possibilities to
speed-up queries include using the scheme by Fraundorfer et al. (2007) to cluster bags-of-words by similar-
ity, allowing searches to be limiting to a small cluster of similar scenes, or to search a set of whole-image
descriptors as a first-pass measure of similarity (Hays and Efros, 2008).

5.4.3 Choosing k

The branch-factor of the hierarchical dictionary, k, and the number of levels, determines the eventual number
of image words found. Ideally each image word should correspond to one class of feature in the environment,

1If the distance function ever takes negative values then the centres found may not be distinct, i.e. there may be fewer than
k centres found.
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Input: N descriptors, k: number of centres, I: number of k-medoids iterations
Output: {c1, c2, ..., ck} ⊆ {1, ..., N}: set of k of the descriptors forming good cluster centres

// Precompute distances

For all pairs of descriptors i,j in 1, ..., N:

Compute and store distances d(i,j)

// Add initial k centres one at a time

Repeat k times:

Iterate over all descriptors to find point i where the reduction

in residual from adding i as a centre is greatest

Add i as a centre

Assign each descriptor to closest centre

// Refine centres to lower residual

Repeat for I iterations or until no change:

Consider moving each centre. For each centre c:

Iterate over all descriptors which are not centres to find point i where the

reduction in residual from replacing centre c with descriptor i is greatest

If swapping i and c would reduce the residual then perform the swap

Assign each descriptor to closest centre

Figure 5.7: Partitioning Around Medoids (PAM) algorithm for k-medoids clustering.

however in practice similar-looking descriptors are sometimes split between image words, especially when
viewed from different viewpoints, and sometimes one image word describes multiple classes of feature. Cur-
rently, one word for every 20-30 descriptors for the first few thousand frames (up-to a million descriptors) is
a suitable heuristic, although the parameter sensitivity is low. This parameterisation is verified by inspecting
the clusters found, with the aim that each cluster corresponds to a different class of feature (Figures 4.1 and
5.2 for example). Typically five to eight levels in the hierarchical dictionary are used, using more degrades
the performance.

Theoretically, the number of words needed should increase more slowly as the robot explores, or as the robot
re-visits known environments, however additional words may be needed to provide sufficient distinctiveness
as more similar-looking environments are explored. In future we plan to estimate the numbers of words
needed by examining how efficiently new frames are being described.

5.4.4 Choosing subset sizes

When choosing subsets of descriptors to cluster, the probability that the subset does not include one of the
clusters found in the underlying data should be minimised. We assume that a suitable number of clusters,
k, is known.

If each observed descriptor is assumed to fall into one of k feature classes, and that the probability of an
observed descriptor falling into any one feature-class is 1/k, then the probability of there being no descriptors
in the first feature-class in a random subset of size S is (1− 1

k )
S . Therefore the probability that a subset of

size S misses at least one feature-class is:

P ( 1 or more feature-classes missed ) < k(1− 1

k
)S (5.4.3)

(with ‘<’ because probabilities are not disjoint; multiple clusters may be missed). A value of S that ensures
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(a) Choose k=3 initial cluster centres (green)
from N=40 descriptors (blue).

(b) Iterate over centres, swapping centres with
non-centres where swapping improves the
clustering.

(c) Keep swapping centres to improve cluster-
ing.

(d) Eventually good centres for clustering the
entire dataset will be found (the clusters
they define are circled).

Figure 5.8: Illustration of PAM k-medoids clustering: 40 points in 2D space are clustered into 3 clusters.

Figure 5.9: Subset sizes necessary to ensure the probability of missing a cluster is less than ǫ, ǫ =
0.001, 0.01, 0.1. This indicates that only small subsets need to be clustered. Lines all converge to k log k as
k →∞.
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this probability is less than a threshold, ǫ, is given by:

S =
log ǫ− log k

log(1− 1
k )

(5.4.4)

Examples of suitable values of S for different k are shown in Figure 5.9.

This is a best-case analysis, as the distributions of feature-classes will vary in practice, however it indicates
that the probability of missing clusters by clustering only subsets is small, particularly for small k. The
probability of these clusterings which miss centres being used is even lower if multiple CLARA iterations are
used to select the best of several clusterings (Figure 5.5).

5.4.5 Complexity analysis of online re-training

While completely rebuilding a dictionary periodically may appear inefficient, in fact it has the lowest com-
plexity possible for a scheme building a hierarchical dictionary incrementally, and has lower complexity than
previous proposed schemes. This section proves this result.

If N descriptors in total are observed, and descriptors are clustered each time the number of descriptors
increases by a factor of f , then rebuilding will have occured at most logf N times, with f i descriptors at the
ith time.

We assume that logA n image words are sufficient to describe n descriptors, for some constant A. The ith
time clustering occurs, we cluster f i descriptors into logA(f

i) words.

Next we assume a balanced tree is built with branch-factor k. The ith time clustering occurs, a descriptor
can be mapped to the correct word with k logk logA(f

i) comparisons2, so f ik logk logA(f
i) comparisons are

required to map every descriptor to a word each time clustering occurs. Clustering occurs approximately
logA(f

i)/k times, with clustering subsets requiring C(k) operations for some function C (i.e. constant time
when the branch-factor is fixed).

When N descriptors have been observed, the total number of comparisons needed is:

∑logf N

i=2

[

f ik logk logA(f
i) + C(k) logA(f

i)/k
]

(5.4.5)

=
∑logf N

i=2

[

f ik logk i+ f ik logk logA f + C(k) logA(f
i)/k

]

(5.4.6)

As A and k are fixed, the first term dominates. Applying the following result:

n
∑

i=1

log(i)c · id · bi = Θ(nd · log(n)c · bn) (5.4.7)

from Summation; Wikipedia (2010), verified with the symbolic algebra software package Maple (n.d.), the
total number of comparisons has complexity:

Θ(f logf N log logN) (5.4.8)

= Θ(N log logN) (5.4.9)

For comparison with our scheme, we consider a scheme building a hierarchical dictionary incrementally,
so that every descriptor is either mapped to an existing word, or added to a new word, with the same
assumption that N descriptors can be described with logAN words. If a balanced tree with branch-factor

2A balanced tree with L leaves, and branch factor k, has height logk L. Inserting a descriptor into this tree requires k logk L

comparisons.
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k is built incrementally, with logA j words when descriptor j is added, then k logk logA j comparisons are
needed to add the jth descriptor. This gives the total number of descriptor comparisons as:

∑N
j=2 k logk logA j (5.4.10)

= Θ(N log logN) (for fixed k and A) (5.4.11)

Remarkably, the complexity of our scheme equals the complexity of the theoretically most efficient scheme
for incrementally building a hierarchical dictionary. In practice, contemporary schemes building dictionaries
incrementally use simple single-level dictionaries, with complexity which is potentially worse than this case
(Filliat, 2007; Angeli et al., 2008a; Eade and Drummond, 2008; Nicosevici and Garca, 2009), although if a
balanced kd-tree was built incrementally, and used to match descriptors to words, then the problem is very
similar to the theoretically most efficient scheme described.

The total cost of our scheme is also comparable with any other schemes building a dictionary incrementally,
because the total cost after observing N descriptors is dominated by the most recent clustering event.
Asymptotically, the cost of the most recent event, compared to all previous clustering events (those before
time N/f), is given by:

lim
N→∞

N log logN − N
f log log N

f

N log logN
=

f − 1

f
(5.4.12)

For a typical value for f , for example f = 1.5, our scheme can be made no-worse than three times more
costly than any other method which involves building a hierarchical dictionary.

This analysis assumed that the number of words was logarithmic in the number of descriptors. Alternatively,
the worst possible case is that the number of words necessary is proportional to the number of descriptors.
In this worst possible case, both our scheme, and the theoretically most efficient scheme, have complexity
Θ(N logN).

A drawback of our scheme however is that novel words may be introduced somewhat later than when they
are first encountered; a word encountered at time t may not be added until time ft. A further drawback to
the current implementation is that all descriptors are stored, and these dominate the memory required (and
also BoWSLAM’s memory requirements). This is not a limitation of the approach however, as descriptors
could be merged when similar, reducing costs. Storing descriptors from a full day of exploration in memory
is within the capabilities of a modern computer; for example, if 200,000 images are each described with 250
64D SURF descriptors, then 3GB of memory is needed.

5.4.6 Implementation details

As stated earlier, assigning descriptors to clusters is the most costly part of rebuilding a dictionary. Several
optimisations allow this to be speeded up; in this section we describe one important optimisation. The
cost of assigning descriptors to clusters is dominated by the cost of computing the distance between pairs
of descriptors. This optimisation reduces the number of comparisons needed to assign a descriptors to the
closest of k centres.

When descriptors belong to a metric space, the distances between cluster centres can be used to speed up the
assignment of a descriptor to its nearest centre. A set of descriptors, with an associated distance function δ,
form a metric space if and only if δ satisfies the following properties:

δ(x, x) = 0 ∀ x (5.4.13)

δ(x, y) > 0 ∀ x, y where x 6= y (5.4.14)

δ(x, y) = δ(y, x) ∀ x, y (5.4.15)

δ(x, y) + δ(y, z) ≤ δ(x, z) ∀ x, y, z (triangle inequality) (5.4.16)
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Figure 5.10: When descriptor x (marked ×) is measured to be δ(x, c1) from a centre c1, other centres further
than 2δ(x, c1) from c1 (i.e. centres outside of the dashed circle) cannot be the nearest neighbour of x. In
this example c2 cannot be the closest centre. c3 could be however.

The fourth property, the triangle inequality, allows a descriptor to be matched to a set of cluster centres
more efficiently. Conventionally, to match a descriptor to the closest cluster centre requires it to be compared
to each centre. When a descriptor is matched to a small set of centres however, the costs of storing the
distances between centres is low (and these distances are already available if descriptors have been k-medoids
clustered), allowing the following optimisations to be made.

If a descriptor x is distance δ(x, ci) from centre ci, and another centre, cj , is distance δ(ci, cj) from ci, then
the following test checks if cj can ever be the closest descriptor to x:

if 2δ(x, ci) ≤ δ(ci, cj) then δ(x, ci) ≤ δ(x, cj) (5.4.17)

because δ(ci, cj) ≤ δ(ci, x) + δ(x, cj) (by triangle inequality) (5.4.18)

Therefore, if 2δ(x, ci) ≤ δ(ci, cj) then the distance δ(x, cj) does not need to be computed, as cj must be
further from x than ci (Figure 5.10).

A slightly stronger test is possible when we have already found a centre ck which is closer to x. In this case:

if δ(x, ci) + δ(x, ck) ≤ δ(ci, cj) then δ(x, ck) ≤ δ(x, cj) (5.4.19)

because δ(x, cj) ≥ δ(ci, cj)− δ(x, ci) ≥ δ(x, ck) (by triangle inequality) (5.4.20)

This test can be adapted for when the SSD, δSSD, is used to measure descriptor similarity. The SSD does not
satisfy the triangle inequality, so is not a metric, but its square root, the Euclidean distance, does. Therefore:

if
√

δSSD(x, ci) +
√

δSSD(x, ck) ≤
√

δSSD(ci, cj) then δ(x, ci) ≤ δ(x, cj) (5.4.21)

To avoid evaluating the square root (which is expensive on some systems) the following approximation can
be used:

if 2δSSD(x, ci) + 2δSSD(x, ck) ≤ δSSD(ci, cj) then δ(x, ci) ≤ δ(x, cj) (5.4.22)

This approximation is derived using the following inequality:

0 ≤ (d1 − d2)
2 = d21 − 2d1d2 + d22 = (d1 + d2)

2 − 4d1d2 (5.4.23)

⇒ d1 + d2 ≥ 2
√

d1d2(assuming d1, d2 ≥ 0) (5.4.24)
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From Equation 5.4.22:

if δSSD(x, ci)+2
√

δSSD(x, ci)δSSD(x, ck)+ δSSD(x, ck) ≤ δSSD(ci, cj) then δSSD(x, ci) ≤ δSSD(x, cj) (5.4.25)

Combining this with the inequality δSSD(x, ci) + δSSD(x, ck) ≥ 2
√

δSSD(x, ci)δSSD(x, ck) gives:

if 2δSSD(x, ci) + 2δSSD(x, ck) ≤ δSSD(ci, cj) then δSSD(x, ci) ≤ δSSD(x, cj) (5.4.26)

This test is almost as powerful as the test for metric spaces (Equation 5.4.19), because δSSD(x, ci) +
δSSD(x, ck) ≈ 2

√

δSSD(x, ci)δSSD(x, ck). This approximation is good, because ci was not eliminated when
the closer centre ck was found, therefore δSSD(x, ci) falls in the range:

δSSD(x, ck) ≤ δSSD(x, ci) ≤ 3δSSD(x, ck) (5.4.27)

In the worst case (δSSD(x, ci) = 3δSSD(x, ck)) the approximate bound is 8− 4
√
3 times, or 7.2% higher than

the exact case.

This test takes negligible time compared with descriptor comparison, and reduces the number of comparisons
needed by around 25% when 121D patches are clustered by SSD. Cluster centres are sorted by the number of
descriptors assigned to them (when clustering a subset), so that descriptors are compared to the centres they
are most likely to be close to first. This order improves performance slightly compared to a random order,
or sorting by each clusters’ residual (which each reduce the number of comparisons by a smaller amount;
about 16% rather than 25%).

A similar test is possible, as shown in Figure 5.11, allows descriptors which are near to one centre, ck, and
are observed to be far from another centre, ci, to determine that other descriptors close to ci are not closer
than ck.

if δ(ci, cj) ≤ δ(x, ci)− δ(x, ck) then δ(x, cj) ≥ δ(x, ck) (5.4.28)

so cj cannot be closer than ck. In a high-dimensional descriptor-space with D dimensions however, this test
will almost never eliminate centres. If this test can be applied, then

δ(x, ci)− δ(x, ck) ≤ δ(x, ci)/2 (5.4.29)

otherwise ci would have been eliminated by the earlier test. The volume of the hypersphere in which a point
must lie in order to be eliminated is less than 1

2D of the volume of a hypersphere including both descriptors,
so the probability of it containing a centre is extremely small.

In the future two further optimisations are planned: firstly, the entire descriptor, or occasionally multiple
descriptors are compared at each level of the hierarchical dictionary. A more efficient kd-tree like approach
would be to partition the descriptors, so for example only eight dimensions of a 64D descriptor would be
used for clustering at each of eight levels. This could potentially speed up retraining and indexing by a factor
of L, the number of levels, however it may also degrade the quality of the clustering.

The second planned optimisation is to predict where descriptors will fall during re-training, based on their
previous cluster assignment. This prediction could potentially be used together with the triangle inequality
result detailed above to assign many descriptors to a new dictionary with considerably fewer comparisons.

5.5 Results

In this section experimental results from testing our BoW scheme are presented. Firstly, our scheme is
validated and parametrised on an object recognition task. Secondly, the ability to localise a pedestrian in a
large indoor environment is demonstrated.
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Figure 5.11: When the closest centre so far to descriptor x is c1, and x is measured to be δ(x, c2) from a
centre c2, other centres within δ(x, c2)− δ(x, c1) of c2 cannot be the nearest neighbour of x. In this example
c3 is inside this circle, so cannot be the closest centre.

Figure 5.12: Benefits of re-training when new environments are encountered.

5.5.1 Validation

Firstly, as described in our paper (Tom Botterill et al., 2008), the BoW scheme is tested on the 10,200-image
University of Kentucky dataset, of which example images are shown in Figure 5.3. This dataset consists of
four photos of each of 2550 objects. Each image is added to the BoW database, after which a dictionary
is built. To measure retrieval performance, each image is used as a query image in turn, and the average
number of correct matches (those showing the same object) out of the top four returned is computed. A
score of 4 represents perfect performance, whereas a score of 1 represents only the ability to detect duplicate
images.

To test if re-building the dictionary is worthwhile, rather than using an earlier dictionary, or a dictionary
built from training data, recognition performance is measured when training is carried out using only a
subset of the images. 64D SURF descriptors are extracted from each image, and dictionaries of 10,000 words
are built using CLARA k-medoids clustering. Figure 5.12 shows that training on all of the images gives
a clear performance improvement compared with re-training on only a subset of images, hence re-training
when new environments are encountered is worthwhile.

The University of Kentucky dataset is also used to evaluate the performance of the approximate clustering
scheme, and to choose an appropriate clustering algorithm. Table 5.2 shows analysis of the clustering of a
small training set of 100,000 64D SURF descriptors into 21 clusters at each of three levels. The quality of
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Table 5.2: Results from clustering 100k 64D SURF descriptors into 21 clusters at 3 levels (giving 9261 words
in total), as presented in Tom Botterill et al. (2008). The mean and sample variance of 5 runs with each
parametrisation are given. Times are indicative only; our current implementation is considerably faster.
Borderline descriptors are those where the second closest centre is less-than 10% further away than the
closest centre. Residuals are in arbitrary units (descriptor-space distance squared).

Clustering method CLARA Iterations Residual % borderline Time (s) Score (top 4)

k-means, 20 iterations - 39.5 ± 0.0 11.2 ± 0.1 3.6 2.00± 0.05
CLARA k-medoids 6 44.2 ± 0.5 8.5± 2.2 1.8 1.93± 0.02
CLARA k-means 1 40.2 ± 0.0 12.2 ± 3.7 0.4 1.92± 0.02
CLARA k-means 6 39.9 ± 0.1 16.0 ± 5.0 3.7 1.90± 0.02
CLARA k-medoids 1 44.8 ± 0.1 14.8 ± 2.0 0.4 1.84± 0.07
Random set of centres - 44.0 ± 3.1 22.7 ± 12.0 0.3 1.71± 0.08
Random separated centres - 46.0 ± 4.1 14.7 ± 9.9 0.9 1.71± 0.09

the clustering is evaluated for several different clustering algorithms: full k-means, CLARA k-means, and
CLARA k-medoids. The performance of clustering algorithms is compared to the use of random descriptors
as centres. It is possible that all clustering is doing is finding a set of descriptors distributed throughout the
descriptor space, so sets of random descriptors chosen with a heuristic minimum separation constraint are
also considered. Each test is run five times and the mean score and sample standard deviation are given.

Both random centre-selection schemes perform significantly worse than dictionaries generated by any of the
clustering algorithms, indicating that the clustering algorithms are worthwhile. Applying k-means clustering
to all descriptors gives the best performance; this is significantly better than any other method, although this
is slow, so is not feasible for generating dictionaries online. CLARA k-means and CLARA k-medoids, with
subsets sized 300, give clusterings of similar quality. Either scheme could be used for building a dictionary
incrementally. With subsets of this size, multiple CLARA iterations are not necessary to ensure that good
clusterings are found.

The residuals of different clusterings found, and the number of borderline descriptors, appear to have little
effect on the effectiveness of dictionaries found.

The University of Kentucky dataset is also used to evaluate several descriptors, and descriptor combina-
tions. The descriptors considered include 64D SURF descriptors, shorter 36D SURF descriptors (the patch
described by each descriptor is divided into 9 patches rather than 16, resulting in a shorter descriptor),
and 64D SURF descriptors extracted from downsampled images Clarke (as proposed by 2009, to speed-up
extraction and enable real-time use). Extracting 600 36D or 64D descriptors from a 640× 480 image takes
180ms, and extracting 200 features from an image downsampled to 320×240 image takes 45ms. While SURF
descriptors are too expensive to extract from every frame for real-time positioning, these descriptors pro-
vide a benchmark for evaluating cheaper descriptors. If used only for location recognition, it might only be
necessary to extract SURF descriptors from a subset of frames (Eade and Drummond, 2008). Alternatively,
SURF descriptors extracted from downsampled images can feasibly be extracted in real-time.

The second type of descriptors considered are colour histograms. Descriptors of colour are often found to be
effective for object recognition, and to be complementary to other descriptors (Hays and Efros, 2008; Filliat,
2007). In addition, they are cheap to extract. The histograms are centred on DoH blobs when combined
with SURF descriptors, or are centred at points chosen randomly when used alone. Each histogram consist
of a 16 bin 1D hue histogram and a 12 bin 1D saturation histogram, giving a 28 byte descriptor in total.
Histogram similarity is measured using SSD, and when combinations of descriptors are used, the different
distance measures are simply added together.

The third type of descriptors considered are simple image patches centred on FAST corners. Patch descriptors
are often effective for matching features between frames (Section 4.5.5), and are cheap to extract.
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Table 5.3: Performance of various descriptors at object recognition, using the University of Kentucky dataset.
Around 600 descriptors are extracted from each image.

Descriptor combination Score (top 4) Descriptor size (bytes)
36D SURF+Histograms 3.00 64
Random Histograms 2.91 28
64D SURF 2.45 64
11× 11 oriented RGB patch 2.35 363
11× 11 oriented greyscale patch 2.35 121
64D SURF (downsampled) 2.25 64
9× 9 oriented greyscale patch 2.22 81
36D SURF 1.62 36

Figure 5.13: 95% of correct matches are returned within the top 5% of results.

For each type of descriptor, a dictionary is built using CLARA k-medoids from all of the descriptors extracted
from all of the images (up to six million in total), which takes 200s on a single processor. Each query takes
36ms, which includes the cost of comparing the query image to all 10,200 images in the BoW database.

Table 5.3 shows the object recognition performance with various descriptor parametrisations and combina-
tions. Using a combination of histograms and 36D SURF descriptors gives the best performance, with 3.00
correct matches found on average. Figure 5.13 shows that for this descriptor combination, 95% of the correct
matches are returned in the top 5% of query results. Nistér and Stewénius (2006) retrieve 3.29 correct
matches on average in a time of about 0.0027s per query (using an inverse file), however they use larger
numbers of long and expensive-to-extract 128D SIFT descriptors, and use a slow k-means clustering to build
a dictionary.

Using histograms alone is surprisingly effective: 2.91 correct matches are found on average. 36D SURF
descriptors perform relatively poorly alone, these short descriptors are not sufficiently distinctive. Of the
other descriptors, 64D SURF are the most effective, although only by a small margin over greyscale patches.
Again, greyscale patches match the performance of colour patches of the same area, while requiring one third
as much memory. Greyscale patches outperform SURF descriptors extracted from downsampled images,
indicating that this optimisation is not worthwhile.

In conclusion, colour histograms are the most suitable low-cost descriptors for object recognition, although
greyscale image patches are also effective. CLARA k-means or k-medoids clustering successfully builds
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dictionaries from all observed descriptors, and these dictionaries are more effective than dictionaries built
from only a subset of descriptors. Performance is parametrisation-dependent however, and results based on
this object recognition task are not necessarily applicable to other tasks, such as robot localisation. In the
following section we describe a pedestrian navigation experiment which demonstrates the location recognition
ability of our BoW scheme in a more realistic environment.

5.5.2 Pedestrian navigation application

One use for BoW location recognition is localisation in a previously-mapped environment. This section
presents results from integrating the BoW scheme into a pedestrian navigation system, which provides
validation that it is suitable for robot localisation. My BoW implementation is used, and I co-authored
the paper on the system (Hide, Botterill, and Andreotti, 2009), however the remainder of the pedestrian
navigation system was developed and demonstrated by Chris Hide, who also prepared the figures which
are reproduced in this section. This system integrates measurements from a low-cost foot-mounted IMU
(Section 2.3.1) with the occasional GPS signal (when the pedestrian ventures outdoors) using a Kalman
filter, and allows the pedestrian’s path to be reconstructed as they walk around a building. Without GPS
updates, the position estimate will slowly drift.

For many pedestrian navigation applications (for example a ‘pedestrian satnav’ scheme to help a visitor
navigate a university campus), it is feasible to survey some of the areas which the pedestrian will visit. This
survey consists of walking around the area with a handheld Sony Handycam video camera and an expensive
‘navigation grade’ IMU. The IMU data is post-processed to produce accurate position estimates of where
images were captured. Greyscale patch descriptors are extracted from the images, and these are used to
build a BoW database using k-medoids clustering.

When a pedestrian navigates the building, they also carry a camera. Images captured are represented as
BoWs, and the database is searched for matches. A match is used when the top match is above a threshold,
and four of the top five matches come from approximately the same location (i.e. sequentially nearby in the
survey images). The top matches are compared to the position estimate from the IMU; matches indicating
that the pedestrian is further than three standard deviations from their estimated position are rejected as
outliers.

Figure 5.16 shows matched images that identify the robustness of the BoW scheme to small changes in scale
and rotation, and large changes in the environment. As the environment is densely mapped, the images
which match most strongly are generally captured from very similar locations, so coordinate updates from
image matches are relatively accurate.

The image database that was constructed using the survey data consisted of 4322 images, and their coor-
dinates. The navigation trial spanned a duration of 21 minutes, over which 5066 images were collected, at
4Hz. Out of the 5066 images, the BoW scheme matched 1374 images (27%) to survey locations. From the
1374 matched images, 51 images (4% of matched images) were incorrectly matched, which corresponds to a
precision of 96% at a recall rate of 27%.

Figure 5.14 shows the integrated IMU and BoW position solution, compared to the survey data, and the
position from the IMU alone. The BoW updates clearly improve the position updates. The area that has
most notable position drift is on the left hand side of the image and corresponds to an area where fewer BoW
position updates are found. Through knowledge of the user’s true trajectory, and by measuring position error
in Google Earth, the largest known position error is measured as 14m.

This experiment is larger than the BoW loop closure experiment described by Cummins and Newman
(2008a), where 2474 images are captured over two loops of a 1km track, captured in a single survey. While
our precision is slightly lower than their 100% figure (they report 96% precision at 40% recall, and 100%
at 27%), the distribution of matches that we observe (Figure 5.15) is at least as good: in surveyed areas,
periods where no matches are found are 100m long at most. In Section 7.4.2 we describe how geometry can
be used to eliminate almost all of the few false matches we observe.
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(a) Trajectory computed from IMU alone (red), and ground-truth survey track (green).

(b) Trajectory computed from IMU with BoW absolute position updates (red).

Figure 5.14: (a) Positions computed from a low-cost foot-mounted IMU alone show substantial drift. 5.14(b)
When updates from using BoW scene recognition are used, the track (marked in green) closely matches the
survey track (marked in red). (from Hide et al., 2009).

86



Figure 5.15: Image matches are found throughout the surveyed regions (marked with camera icons). Green
lines join them to their correct location; longer green lines indicate incorrect matches, which are removed if
they are far from the current estimated position (from Hide et al., 2009).

5.6 Correspondences from the Bag-of-Words algorithm

The BoW representation can also be used to extract cheap correspondences between pairs of images, which
can then be used for both validation of BoW matches, and for camera positioning. In this section we describe
how these are obtained.

If there is exactly one of a particular word in each of two images, then ideally this will correspond to
a matching feature. Finding these matching words is extremely fast, however variability in cluster sizes
leads to many poorly conditioned correspondences being introduced, while good correspondences are missed
when descriptors are split between two nearby clusters. Typically only 40% of the correspondences found
by a brute-force matching are found by BoW feature matching. To avoid this problem we use the coarser
partitioning of the descriptor space at a higher level of the hierarchical dictionary, and find matches within
each cluster by brute-force descriptor comparison. As clusters are still small, with typically fewer than 20
descriptors in each, this is not prohibitively expensive (taking typically 2ms per image pair with 300 features
from each image), and typically over 80% of the correspondences found by a brute-force approach (which
requires around 50ms) are found, with very few additional outliers.

When the descriptors of a small number (N and M) of a particular word appearing in two images are all
sufficiently similar-looking be matched, all possible pairs can be considered as candidate matches (‘N −M
correspondences’). This is useful to ensure sufficient match-candidates are found in self-similar environments.
Chapter 7 describes how the subset of these that are correct is determined.

This BoW feature matching method is similar to the kd-tree approach described in the previous chapter.
BoWSLAM uses the partitioning found by clustering descriptors rather than an arbitrary partitioning about
descriptor components. Clustering descriptors minimises the number that will fall near the boundary of two
clusters (Table 5.2), so unlike the kd-tree approach, by choosing a sufficiently coarse partitioning we can
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Figure 5.16: Examples of matches found when using our BoW scheme for pedestrian navigation. Images from
the navigation trial (left); image matched from the database (right). Changes include people and objects
visible in one image which are not visible in others, small changes in orientation and scale, and changes in
illumination (the survey was conducted on a cloudy day, and the experiment on a sunny day) (from Hide
et al., 2009).
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avoid searching neighbouring bins for matches.

One enhancement which may boost BoW feature matching’s performance is to assign descriptors falling near
the border of clusters to multiple image words, as is done by Jegou et al. (2008).

5.7 Conclusions

In this chapter we have developed a new BoW scheme for localising a robot in a previously unknown
environment. This scheme is based on the hierarchical dictionary model of Nistér and Stewénius (2006),
which allows images to be indexed and matched efficiently. Unlike previous large scale BoW schemes, our
new scheme allows the dictionary to be rebuilt dynamically, allowing image words appropriate for describing
any environment to be found. This simple retraining scheme is shown to attain the theoretical best complexity
for a scheme rebuilding a dictionary dynamically, unlike previous schemes. The total cost can be made no
worse than a small constant factor more than any other scheme to rebuild a dictionary dynamically.

In a large scale pedestrian navigation application, our BoW scheme is shown to have similar performance
to leading contemporary BoW schemes, while requiring only computationally cheap image patch descriptors
rather than expensive invariant descriptors. Regular position updates are provided, which are used to correct
the drift in a position estimate from an IMU.
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Chapter 6

Background to robust relative camera

pose computation

Abstract

Robustly computing the relative pose of the robot when two images were captured is essential
for BoWSLAM’s operation. This chapter reviews suitable algorithms for this estimation, and
gives an overview of the RANSAC framework for robust estimation. Experiments are conducted
on simulated data in order to select a suitable combination of algorithms.

6.1 Introduction

An integral part of BoWSLAM is the framework which computes relative poses from a sequence of images.
This chapter describes contemporary algorithms suitable for this task, then selects an appropriate combina-
tion of these algorithms for robustly computing relative poses from feature correspondences between pairs
of images.

As a robot explores, it captures images of its environment. When a pair of images overlap, the relative pose
of the two camera positions when they were captured can be computed. From a sequence of overlapping
images, a sequence of relative pose estimates can be added together to reconstruct the trajectory of the
camera. The accuracy of the trajectory depends on the accuracy of the relative poses used to compute it. If
any of these relative poses contain errors, then these errors will propagate into the estimate of the trajectory.
Hence it is important that as many as possible of the relative pose estimates are free of gross errors, and
ideally that the remaining errors are minimised.

This chapter is organised as follows: the following section gives an overview of the combination of algorithms
used, then describes each algorithm in detail. The efficient implementation of these algorithms is discussed
in Section 6.3. Section 6.4 evaluates the performance of the algorithms described on simulated data, in
order to inform implementation decisions and to quantify uncertainty. Finally, Section 6.5 summarises and
discusses our choice of algorithms.

6.2 Algorithms for relative pose computation

This section gives a brief overview of the combination of algorithms used, before describing each algorithm
in detail. The combination of algorithms used is summarised in Figure 6.1.
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The relative pose of two camera positions can be computed from a set of feature correspondences. These cor-
respondences can be obtained by matching descriptors between pairs of images, as described in Section 4.5.6,
or from the images’ Bag-of-Words (BoW) representations, as described in Section 5.6. If the correspondences
are correct matches between static features in the world, then least-squares methods can be used to estimate
the relative pose of the two camera positions. Exact methods, and linear least-squares methods for relative
camera pose computation are described in Section 6.2.1, and nonlinear least-squares methods are described
in Section 6.2.2. In practice however, these correspondences contain many gross errors, caused by incorrectly-
matched features in self-similar environments, from corners arising from occlusion boundaries intersecting
edges, and from moving objects in the scene; these outliers must be removed before least-squares methods
can be applied. To remove outlier correspondences, while simultaneously computing a relative pose from
inliers, the RANSAC framework (Fischler and Bolles, 1981) can be used. While BoWSLAM actually uses
the BaySAC framework described in the following chapter, BaySAC is based on the RANSAC framework,
as described in this chapter in Section 6.2.3.

Once RANSAC has identified a set of correspondences containing mostly inliers, and a relative pose estimate
which is approximately correct, a top-down refinement procedure (Rousseeuw and Leroy, 1987) is applied
to remove remaining outliers and to improve the accuracy of the pose estimate. Two possible top-down
refinement algorithms are described in Section 6.2.4.

Many of the algorithms described use the Singular Value Decomposition (SVD), or Levenberg-Marquardt’s
method for least-squares optimisation, which are described in Appendix A.

For each pair of frames:

1. Find Matches

• Find a set of possible correspondences, e.g. from the Bag-of-Words representations of the two
images (from 15%-75% of about 200 matches will be inliers)

2. Find inliers and approximate solution

• Use RANSAC/BaySAC to identify which of the possible correspondences are inliers, while si-
multaneously estimating a first approximation to the essential matrix (inlier set now contains
over 95% inliers)

3. Refine inliers and solution

• Top-down refinement finds more inliers and rejects more outliers, while simultaneously fitting
an increasingly accurate essential matrix

• Choose camera matrix from E and reconstruct 3D point positions (up to a scale factor); reject
points falling behind camera (inlier set now contains over 97% inliers)

• Refine relative pose by Levenberg’s nonlinear least-squares optimisation to minimise Sampson’s
error (errors in relative orientation reduced by typically 30%)

4. Estimate uncertainty in relative orientation

• Variance estimated from number of inliers and feature localisation accuracy.

Figure 6.1: Procedure for estimating the relative pose of two cameras

6.2.1 Exact and linear least-squares computation of the essential matrix

The relative pose of two cameras consists of a 3D rotation and translation. From correspondences between
matching features in two frames this rotation and the direction of the translation can be estimated, however
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the magnitude of this translation cannot be determined without further information. In this chapter, only
the estimation of the rotation and translation direction is discussed, and the procedure used to recover the
translation magnitude is described later in Section 8.3.2.

Algorithms to compute the relative pose from feature correspondences often work by estimating the essential
matrix (Hartley and Zisserman, 2003, Chapter 9). The essential matrix, E, is a 3 × 3 matrix encoding the
rotation and translation direction. If the rotation is expressed as a matrix, R, and the translation as a unit
vector, t, then the essential matrix, E, is defined by

E = [t]×R (6.2.1)

where [t]× is the matrix-representation of the vector cross-product, with the property that [t]× x ≡ t × x.
[t]× can be written:

[t]× ≡





0 −t3 t2
t3 0 −t1
−t2 t1 0



 (6.2.2)

where t = (t1, t2, t3).

This section describes two algorithms for estimating the E: firstly the five-point algorithm, by Stewénius
et al. (2006), for computing a set of possible essential matrices from five correspondences, and secondly, the
eight-point algorithm (Hartley and Zisserman, 2003, Chapter 11), a linear least-squares algorithm for fitting
an essential matrix to eight or more correspondences. While the workings of the algorithms are not central
to the thesis, understanding their operation and characteristics are important, as they are required as part
of the RANSAC framework, and are often the single most costly part of BoWSLAM (Figure 8.25).

E has the property that, for a noiseless correspondence between points p and p′ in the image ((px, py, 1) and
(p′x, p

′
y, 1) as homogeneous coordinates):

p′TEp = 0 (6.2.3)

Expanding this equation gives a single linear constraint in the nine elements of E for every correspondence.

As E has five degrees of freedom, from the 3 DOF rotation and 2 DOF translation direction in Equation 6.2.1,
at least five correspondences are needed to estimate it. Given exactly five correspondences, there are up
to ten possibilities for E, which can be computed from Equation 6.2.3 using the five-point algorithm of
Stewénius et al. (2006). The five-point algorithm uses the five linear equations in the nine elements of E
from Equation 6.2.3, to compute four basis vectors for the elements of E, by SVD. Any linear combinations
of these basis vectors which satisfy Equation 6.2.1 is a possible essential matrix. These possibilities are found
by solving cubic constraints on the elements of E from Equation 6.2.1.

E is uniquely determined by eight correspondences, which give eight linear equations in the nine elements
of E, with an additional constraint given by detE = 0 (because det [t]× = 0). E could be computed from
the matrix F that minimises:

C
∑

i=1

p′T
i Fpi (6.2.4)

for C ≥ 8, however this cost function is biased towards p with high magnitude. To reduce the effect of
this bias, the normalised eight-point algorithm (Hartley and Zisserman, 2003, Chapter 11) is used. The nor-
malised eight-point algorithm first transforms the set of point locations from each image with two transforms,
T and T′, in order to centre them and to normalise their variance.

qi = Tpi, q′
i = T′p′

i. (6.2.5)

The SVD is then used to estimate the elements of the matrix F′ best-satisfying the C linear constraints from
Equation 6.2.3 for these normalised points:

C
∑

i=1

q′T
i F′qi. (6.2.6)
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The normalising transforms are then applied to F′ to find a matrix F which approximately satisfies Equa-
tion 6.2.3 for the original points:

F = T′−1 F′ T−1. (6.2.7)

This matrix F is an approximation to the fundamental matrix (a better estimate is given by imposing
the constraint that det F = 0; Hartley and Zisserman (2003), chapter 11). F will not exactly satisfy
Equation 6.2.1 however. Equation 6.2.1 implies that the singular values of E are 1, 1, and 0, and this
property can be used to calculate E as follows:

E = U





1 0 0
0 1 0
0 0 0



VT (6.2.8)

where UDVT = F is the SVD of F (Hartley and Zisserman, 2003, Chapter 11).

6.2.2 Nonlinear refinement of relative poses

The normalised eight-point algorithm finds the essential matrix from the matrix minimising Equation 6.2.6.
This equation is not a good measure of the error in relative pose despute the normalisation however, as it is
biased by the distances of points from their centroid. Ideally the transformation and 3D structure should be
found that minimises the squared distances between where reconstructed 3D points are projected into the
image and where they are measured to lie (the reprojection error; Hartley and Zisserman, 2003, Chapter 11).
This estimate is the MLE of the relative pose (Triggs et al., 1999).

The orientation, translation direction, and reconstructed 3D point locations can be refined iteratively to
minimise the reprojection error using Levenberg’s method for nonlinear optimisation (Appendix A.2). Con-
vergence typically requires few iterations. Refining a large number of reconstructed points is costly however;
an alternative approach is to refine only the relative pose, to minimise Sampson’s approximation to the
reprojection error (Hartley and Zisserman, 2003, Chapter 11), given by

C
∑

i=1

p′T
i Epi

(Epi)21 + (Epi)22 + (Ep′
i)

2
1 + (Ep′

i)
2
2

. (6.2.9)

This optimisation is fast as only the relative pose is refined, and few iterations are needed to achieve conver-
gence.

These least-squares methods minimise the effects of small errors in feature localisation, however they are
sensitive to incorrect correspondences (outliers), which can lead to a completely incorrect solution. The
following section describes how outliers are removed, while using the exact and least-squares methods to
compute an accurate camera pose from the inliers.

6.2.3 RANSAC for essential matrix estimation

E is computed from outlier-contaminated correspondences, while simultaneously identifying inlier correspon-
dences, using the RANSAC framework (Fischler and Bolles, 1981, summarised in Figure 6.2), as demon-
strated by (Torr and Murray, 1997). In RANSAC, many small hypothesis sets of data points are chosen
randomly. Each hypothesis set is used to generate candidate models, and the model consistent with the
largest number of data points is selected. Assuming the selected model is correct, the data points consistant
with this model are inliers.

To estimate E by RANSAC, random hypothesis sets of five correspondences are selected. Each hypothesis
set is used to compute up to ten essential matrices, using the five-point algorithm described in Section 6.2.1.
Each of these essential matrices is tested against every correspondence, and correspondences compatible with
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Repeat for I iterations, or until a large inlier set is found:

Hypothesise

• Choose a random hypothesis set of 5 correspondences, H

• Calculate 2 to 10 essential matrices from H using the five-point algorithm

Test

For each of these essential matrices:

• Find the subset of correspondences where Sampson’s error falls below a threshold (inliers
if this model is correct).

Return model with largest inlier set, and the corresponding inlier set.

Figure 6.2: RANSAC for essential matrix computation.

the model being correct are counted (those where Sampson’s error is below a threshold). This is repeated
for many hypothesis sets, until an essential matrix compatible with many correspondences is found. If the
model is correct, then these correspondences are inliers.

While five correspondences is the minimum needed to generate a relative pose hypothesis in general, SLAM
schemes often assume a motion model, which allows an approximate relative pose to be predicted by ex-
trapolating from previous motion. Single camera EKF-SLAM schemes (Section 3.3) can update a predicted
pose using just a single correspondence. Civera et al. (2009b) describe a 1-point RANSAC scheme for vi-
sual odometry, where random hypothesis sets consisting of just a single correspondences are used. Each
of these correspondences is evaluated by updating a copy of the EKF’s state. Only the updates which are
also compatible with the observed motion of many other tracked points are used to update the SLAM EKF.
Hundreds of features can be matched between frames in real-time, however this framework is only suitable
for the situation where camera motion between frames is small, and could not be adapted to register frames
without prior relative pose estimates, for example when closing loops or when tracking fails.

6.2.4 Top-down outlier removal

RANSAC efficiently finds models which are approximately correct, however usually a few outliers will remain,
and some inliers will be missed. Even with low outlier rates, RANSAC can require a large number of iterations
to find a solution including all of the inliers (Lacey et al., 2000), as even when the hypothesis set contains only
inliers, errors in localising these points introduce errors into the model found, and these errors are sufficient
that the model is likely to miss inliers. In addition, outliers are likely to be found which are compatible with
the model. For this reason a combination of approaches is needed: RANSAC to find an approximate inlier
set containing at most a few-percent outliers, then a top-down refinement to remove these outliers while
finding more inliers (Chum, 2005).

To remove outliers and compute a more accurate relative pose estimate by top-down refinement, Lacey et al.
(2000) suggest using the approach of Trivedi (1987), who use nonlinear optimisation to minimise a error
function which is robust to mismatched features. This error function is very similar to Sampson’s error
when points are compatible with the relative pose estimate, i.e. where Sampson’s error is less than 3 pixels,
and is constant for points which are not compatible (outliers). The true minimum of the error function
is likely to correspond to the model compatible with most data points. The relative pose is refined using
the downhill-simplex algorithm (an iterative gradient descent method similar to Levenberg-Marquardt). A
suitable initial estimate is required to avoid local minima.
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Figure 6.3: Graph showing the effects of each topdown refinement iteration on inliers missed and outliers
found following RANSAC. Top-down refinement rapidly excludes many outliers, except for those which are
coincidentally compatible with the best model found. Although parametrisation dependent, only a small
number of iterations are necessary. Sets of 100 or 500 correspondences with 50% outlier rates, and localisation
errors with a standard deviation of 0.0025 radians are simulated, and RANSAC is used to fit an essential
matrix.

An alternative, simpler, top-down approach is proposed by Rousseeuw and Leroy (1987). A model is fitted to
all data points believed to be inliers, then the points with the largest residual errors are removed, and other
points with smaller residual error are added to the inlier set. For essential matrix estimation, an essential
matrix is fitted to the correspondences believed to be inliers (following RANSAC) using the normalised
eight-point algorithm, then Sampson’s error is computed for every data point. Points where Sampson’s error
exceeds a threshold are removed from the inlier set, and other points where Sampson’s error falls below the
threshold are added. This refinement is repeated several times. Normally, a large inlier set containing few
outliers is found after few iterations, as illustrated in Figure 6.3. The threshold is determined empirically;
when outlier rates are high, and few inliers are found, a threshold which is either too high or too low causes
the initial solution to diverge to one with fewer inliers.

Once the essential matrix and inlier set are found, the essential matrix is decomposed to give four possibilities
for the relative camera pose; the correct relative pose is chosen to be the one leading to most reconstructed
points falling in front of the cameras (Hartley and Zisserman, 2003, Chapter 9). Points lying behind the cam-
era are now discarded as outliers, and remaining points are used for nonlinear refinement of the camera pose,
as described in Section 6.2.1. Given this optimised relative pose, 3D point positions can be reconstructed
up to an unknown scale factor (Hartley and Zisserman, 2003, Chapter 10).

6.2.5 Alternative frameworks for robust relative pose computation

While RANSAC is easily the most popular framework for relative pose estimation from outlier-contaminated
correspondences, other approaches have been proposed for the case when an approximate relative pose is
available, for example from a motion model in SLAM. In this case, an alternative to the classic pipeline of
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extracting features, describing these features, matching pairs of descriptors, then using these matches for
structure and motion estimation, is to couple these stages together, so that the current estimated pose is
used to predict where in the image additional matches are likely to be found, with the new matches then
used to further improved the pose estimate. Chli and Davison (2008) describe such a scheme for efficient
matching in an EKF-SLAM framework, known as Active Matching. When a single feature match is found,
this match is used to update the pose estimate, so that more matches can be found. As the pose estimate
improves, the area which is searched for each feature decreases. Each feature is selected to maximise the
amount of mutual information which will be gained from its measurement, relative to the cost of making
the measurement, so that the accuracy of the pose estimate rapidly improves as more features are observed.
Overall only a small area of each image must be searched, so when the number of features is small, Active
Matching is more efficient than simpler EKF-SLAM tracking schemes, which search for every tracked feature
before making any pose update.

A limitation of Active Matching is the cubic complexity in the number of matched features, which limits
real-time use when larger numbers of matches are needed. This complexity arises from the process used
to identify the feature which should be searched for next at each stage. Handa et al. (2010) propose an
extension to Active Matching, SubAM, which addresses this issue. From the mutual information of pairs
of features, a balanced approximation to the Chow Liu tree is constructed. The Chow Liu tree is used to
find approximations to the mutual information between pairs of nodes efficiently. SubAIM can match 400
features between a pair of images from a slowly moving camera in 170ms. While somewhat higher than the
typical cost of using RANSAC for this matching, the success of this novel approach indicates that alternatives
to RANSAC could be used. A limitation of this approaches is the requirement for an initial relative pose
estimate; while an initial estimate is often available, wide-baseline matching without a motion prior would
still be required for when loops are closed, or to resume positioning after sequences of unusable frames in
challenging environments.

6.3 Implementation details

Our five-point algorithm implementation is based on code by Stewnius (2006), ported to C++. The ‘Eigen’
matrix library (Guennebaud and Jacob, n.d.) is used for linear algebra; this provides a three-fold speedup
compared with the Lapack++ LAPACK wrapper (Stimming, 2004), as small, fixed-size systems are solved,
which Eigen specialises in solving efficiently. 50% of the computational cost consists of computing the
eigendecomposition of a 10 × 10 matrix; an alternative five-point algorithm by Nistér (2004) avoids this
eigendecomposition (and solves a 10th degree polynomial instead), so may be more efficient.

Levenberg’s method for nonlinear optimisation (Appendix A.2) is also implemented using Eigen. 3 DOF
rotations are represented as 4D quaternions (as is common when refining orientation; Grisetti et al., 2010),
and translation directions are represented as 3D unit vectors. These overdetermined representations, together
with very high correlations between certain measurements (e.g. sideways translation versus yaw), mean that
the Jacobian matrix is often near-singular. In this case, Levenberg’s damping method, which tolerates a near-
singular Jacobian, is more suitable than the method by Marquardt (1963) (in addition, for many problems,
these approaches converge at similar rates anyway; Lampton, 1997). Typically, convergence takes two to six
iterations.

6.4 Selection of camera pose refinement algorithm

The eight-point algorithm, and the algorithms to minimise Sampson’s error and the reprojection error are
tested and evaluated on simulated data in order to identify which are suitable for use in BoWSLAM. In
simulated data, the camera motion, feature localisation errors, and outlier rate are known, allowing an
algorithm’s performance to be evaluated relative to any of these factors.
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Figure 6.4: Graphs showing the effects of feature localisation error on the accuracy of relative pose compu-
tation algorithms. Median errors in orientation and translation direction increase with increasing feature
localisation error. Medians are used as all methods suffer from gross outliers when points have high localisa-
tion errors. The 99% confidence bound is 0.06 at worst for each point.
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6.4.1 Simulating data to evaluate algorithms

Images are simulated by first simulating a cloud of N points and projecting into two cameras. Points have a
depth of 3 to 4 times the baseline length (the distance between the camera centres). The relative pose of the
cameras is chosen with motion in a uniform random direction, and a rotation with angle chosen uniformly
from [−0.75, 0.75], about a uniform random axis1. This range of angles ensures points stay in front of the
cameras. This random relative pose is used to generate a camera matrix which is used to project points
into the simulated images. Measurement noise is simulated by adding Gaussian noise. Cameras have a FOV
of approximately one radian square. When a relative pose is estimated, its error is given by the angular
differences between the estimated relative orientation and translation direction, and the known orientation
and translation direction.

Each point on the graphs shown in this section is the average of thousands of runs, giving each point a tight
99% confidence bound, e.g. 0.06 radians at worst, and typically around 0.02 radians for Figures 6.4 and 6.5.

This simulated data is designed so that points at infinity are almost never observed. Points at infinity are
points far from the camera, the depths of which cannot be estimated accurately (often they will appear
to have a large negative depth), as even small localisation errors have a large effect on the reconstructed
depths of distant points. In real data, points at infinity are frequently encountered. BoWSLAM uses them
for camera pose refinement, but not for subsequent 3D reconstruction.

6.4.2 Experimental results on simulated data

Figure 6.4 compares the performance of the different algorithms with varying feature localisation errors. The
relationship between localisation errors and errors in orientation and translation is approximately linear in all
cases. Unsurprisingly, the five-point algorithm is substantially less accurate than least-squares approaches,
with large model errors occurring even when localisation errors are relatively small. The eight-point algorithm
finds a considerably more accurate solution, but this is improved substantially by nonlinear refinement.
Refining the pose to minimise Sampson’s error gives consistently more accurate results than minimising the
reprojection error. It is not clear why this is; if the reprojection error refinement is started from the solution
of the Sampson’s error refinement, it still diverges to a point with lower reprojection error and higher model
error. The same observation is made regardless of point depths or FOV, or if squared angular errors are
used to evaluate the algorithms. This is a welcome observation however as Sampson’s error is considerably
cheaper to refine. A similar result was found by Chum et al. (2005) in the related problem of perspective
homography recovery (described in Chapter 10): Sampson’s error is as good for homography fitting as the
reprojection-error equivalent for homographies.

Figure 6.5 shows the relationship between the number of correspondences and the accuracy of refined solu-
tions. Gross errors are observed with small numbers of points; models computed using few points should be
avoided where possible. Increasing the number of points decreases errors in localisation, and again, refining
poses to minimise Sampson’s error leads to the most accurate reconstruction. Even with 100 correspondences
between each pair of frames however, significant errors will accumulate when hundreds of poses are added
together, again indicating the importance of good feature localisation accuracy.

RANSAC’s performance is evaluated by comparing its success rate with its theoretical success rate. If
correspondences are inliers with probability p, then the probability of having observing an all-inlier hypothesis
set after I RANSAC iterations is given by

P ( success in I iterations ) = 1− P ( one hypothesis set contains outliers )I (6.4.1)

= 1− (1− p5)I . (6.4.2)

1Uniform random directions are chosen by choosing three i.i.d. normally distributed random variables with zero mean, then
normalising.
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Figure 6.5: Graphs showing the accuracy of relative pose computation with increasing numbers of points.
Mean errors in orientation and translation (in radians) estimated are from simulated correspondences with
localisation errors of 0.005 radians.
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Figure 6.6: Graph showing the success rate of RANSAC with different outlier rates. 200 correspondences
are simulated with localisation errors of 0.0025 radians, and RANSAC is terminated after 250 iterations.
A solution with an inlier-rate of 10% is considered successful. RANSAC’s success rate falls as the outlier
rate increases, roughly in proportion to the probability of observing an all-inlier hypothesis set, although at
higher outlier rates, models close-enough to match many inliers are often found by chance.

Figure 6.6 shows the success rate of 250 RANSAC iterations, with a range of outlier rates, and also shows
its theoretical success rate. For this simulated data, RANSAC is close to matching its theoretical success
rate, although the performance drops slightly when only a small number of all-inlier hypothesis sets are seen
(at outlier rates of around 50%). RANSAC performs well with outlier rates of up to 60%, in which case it
succeeds 70% of the time, however performance drops sharply for higher outlier rates. Note that at high
outlier rates, RANSAC sometimes finds an inlier set even when no hypothesis set contains only inliers, as
so many models are tried that a model compatible with many inliers is often found by chance. Figure 6.7
shows that when RANSAC is successful in finding an inlier set, errors in computed orientations are low, even
though outlier rates are high. Even though many outliers remain in the inlier sets found by RANSAC, these
are successfully removed by top-down refinement (Figure 6.3).

Table 6.1 shows indicative computational costs of the algorithms discussed. The least-squares eight-point
algorithm, and nonlinear optimisation of Sampson’s error, are cheap compared with the cost of even just 100
RANSAC iterations, indicating the importance of making RANSAC converge rapidly. The cost of RANSAC
is dominated by the cost of computing hypothesis sets using the five point algorithm, so minimising the cost
of this algorithm, or the number of RANSAC iteration needed, is important.

Fischler and Bolles (1981) recommend using minimal hypothesis sets, and the five-point algorithm uses
the minimum number of correspondences from which a discrete set of essential matrices can be computed,
however other algorithms could also be used, for example the seven-point algorithm (Hartley and Zisserman,
2003, Chapter 11). The seven-point algorithm finds one or three essential matrices and is widely used for
RANSAC hypothesis generation (e.g. by Torr and Murray, 1997; Mouragnon et al., 2009; Ogale, 2010),
so timings for this algorithm (using the implementation from the OpenCV Computer Vision Library, n.d.)
are also given. While slightly faster than our five-point implementation, the probability of a seven-point
hypothesis set containing only inliers is usually considerably lower than for a five-point hypothesis set, so
use of the seven-point algorithm would only be worthwhile when outlier rates were very low (for example
if less than 15% of correspondences were believed to be outliers). Alternatively, a gradient descent-based
five-point solver could potentially be more efficient than the closed-form approach used, although finding all
minima (corresponding to up-to 10 possible essential matrices) may be challenging.
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Figure 6.7: Errors in orientation increase only slowly with increasing outlier rates, as when RANSAC succeeds,
remaining outliers have a minimal effect on the solution. 200 correspondences are simulated with localisation
errors of 0.0025 radians, and with a maximum 250 iterations. A solution with an inlier-rate of 10% is
considered successful.

Table 6.1: Times taken to compute E and refine relative pose (single thread). Times for refinement are
parametrisation dependent, and refinement to minimise reprojection error (marked *) would benefit signifi-
cantly from a Levenberg-Marquardt implementation using sparse matrices, however this would still be more
expensive than other least-squares algorithms.

Number of points 5/7 15 50
Five-point algorithm 0.10ms - -
Seven-point algorithm 0.07ms - -
Eight-point algorithm - 0.10ms 0.16ms
Refine Sampson’s Error - 0.14ms 0.24ms
Refine Reprojection Error - 3.0ms* 57ms*
100-iteration RANSAC/BaySAC - 12ms 12ms
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6.4.3 Quantifying errors in camera motion

Once the relative motion between two frames has been estimated, an estimate of its uncertainty is often
needed, for example to choose the best of multiple relative position estimates, to integrate multiple relative
position estimates, or to integrate a relative position estimate with a measurement from a different sensor.
Position estimates and their uncertainty are very often expressed as a multivariate Gaussian distribution (i.e.
a position and orientation estimate with an estimated covariance matrix).

In the case of a simple linear model fitted to i.i.d. measurements with Gaussian errors, the variance of the
estimated model is proportional to the variance of the measurements, σ2, divided by the number of degrees
of freedom in the measurements. As relative pose estimation can be approximated locally by a linear model
then it is reasonable to expect errors to vary in proportion to σ√

N−(n−1)
, where N is the number of inliers

and n is the minimum number of points required to fit a model (5 for the case of essential matrices). This
model is a good approximation to the errors observed in Figures 6.4 and 6.5. By fitting the model to the
errors observed when minimising Sampson’s error, the following approximations are obtained: angular errors
in orientation approximated by σR ≈ 28σ√

N−4
, and angular errors in translation direction are approximated

by σt ≈ 40σ√
N−4

.

If the estimated magnitude of the translation, ‖t‖, is also normally distributed, with ‖t‖ ∼ N(s, σ2
s) (Fig-

ure 6.8), a covariance matrix for the camera translation can be fitted. Covariance matrices have three
perpendicular eigenvectors, with eigenvalues equal to the variance in each direction. This enables a covari-
ance matrix for a translation estimate to be computed from its variance in three perpendicular directions,
which include the direction of the greatest and smallest variance, as follows. A set of three orthonormal
vectors including t, {t, t⊥1 , t⊥2 }, is chosen. Expected errors in the directions {t⊥1 , t⊥2 } are approximately
σ⊥ = sσt (Figure 6.8). This breakdown of errors allows a covariance matrix C to be constructed from its
eigendecomposition:

C = QΛQT (6.4.3)

where Q =
[

t t⊥1 t⊥2
]

(6.4.4)

and Λ =





σ‖ 0 0
0 σ⊥ 0
0 0 σ⊥



 (6.4.5)

This error model is very simple, and ignores many significant correlations (such as the strong correlation
between errors in pitch/yaw and errors in motion parallel to the image plane), however this single mea-
surement of orientation uncertainty, and a covariance matrix for uncertainty in translation, are all that are
needed for BoWSLAM, which uses a pose graph optimisation based on the TORO framework (Grisetti et al.,
2007a). Errors caused by the condition of the problem are also ignored: one particular source of error is the
large uncertainties in estimating the translation direction when observed points are all far away. For a small
cloud of points, errors are low for a range of point depths up-until a certain threshold, after which errors
grow rapidly. This model would be hard to fit to real data. Similarly, reconstruction is ill-conditioned if all
point matches fall in a narrow strip of an image (as there is little overlap with a neighbouring image). For a
related problem in GPS, where visible satellites are close together in the sky, a measure known as dilution
of precision is used to estimate errors (Langley, 1999). Dilution of precision measurements are often fitted
to observed errors as we have done here. Dilution of precision is used by Kelly (2003) to estimate robot
localisation errors with respect to measurements of pairs of landmarks; this procedure could potentially be
adapted to larger numbers of points to improve these error estimates.

An alternative way to compute covariances of relative poses is to use the condition of the Jacobian matrix from
fitting a transformation to inliers (Konolige et al., 2009; Eade and Drummond, 2007). When relative poses
are computed using RANSAC however, errors in position and orientation are usually caused by remaining
outlier correspondences, either from movement in dynamic environments, or when a poorly-conditioned or
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Figure 6.8: Diagram showing how errors in translation direction are related to errors in translation once the
magnitude of the translation is known. The uncertainty in the estimated translation is estimated from the
uncertainty in translation direction, and the uncertainty in the translation’s magnitude (the third dimension
is not shown).

small inlier set is found. We have found the Jacobian is often better conditioned when more outliers are
present, so is a poor measure of the quality of a transformation. A potentially more accurate, although also
potentially costly, approach would be to estimate the covariance for each transformation when it is computed,
by propagating small changes in point locations through the relative pose computation, and observing the
change in translation and orientation.

6.4.4 Effects of feature localisation accuracy on the cost of RANSAC

Feature localisation errors do not only increase errors in models computed from feature locations, they also
increase the cost of computing these models by RANSAC. Figure 6.9 shows that higher feature localisation
errors increase the time needed to find inliers, and decrease the number of inliers found. For each value of
the localisation error, the inlier threshold (for Sampson’s error) is tuned to minimise the time taken to find
a hypothesis set, subject to the inlier set containing less than 5% outliers (values close to 0.02 radians are
found in all cases). In the example in Figure 6.9, an all-inlier hypothesis set will be found in 32 iterations
on average, however as localisation errors increase, errors in the models fitted to these all-inlier hypothesis
sets increase, which reduces the number of inliers compatible with them.

Chapter 4 presented results from testing feature detectors on synthetic images for which features located
using the Harris corner detector, with subpixel refinement have localisation errors with a standard deviation
of 0.25 pixels. Similarly, DoH SURF features had localisation errors of around 0.39 pixels. These are probably
underestimates, as real features arise due to 3D objects which appear differently from different viewpoints,
and because features arise around slow-moving occlusion boundaries or objects.

Table 6.2 shows the effect of localisation errors of this magnitude in images of different sizes. In high
resolution images, point localisation errors will have a negligible effect on the cost of RANSAC. In lower
resolution images, as used by many SLAM schemes (Davison, 2003; Civera et al., 2009b), localisation errors
from applying RANSAC would increase the number of RANSAC iterations required by possibly 20%.

While often very effective for object recognition, features sampled systematically from the image are unlikely
to be usable for relative pose computation in a RANSAC framework—if 1000 features were extracted from
a 1000 pixel-per-radian image, and features were matched to the closest corresponding feature in the other
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Figure 6.9: The number of iterations required by RANSAC to fit a model to 100 simulated correspondences,
of which 50% are inliers, with different localisation errors. There are 50 inliers in 100 data points, and the
inlier threshold is tuned to find a solution containing no more than 5% outliers on average.

Table 6.2: Feature localisation errors in images of various resolutions (from results in Chapter 4).
Feature detector Harris+subpix DoH SURF blobs
High-res image (1000 pixels/radian) 0.00025 0.00039
Low-res image (300 pixels/radian) 0.00075 0.0012
1000-pixel panoramic image 0.0015 0.0025
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image, the localisation errors would be approximately 0.034 radians, however refining the positions of matched
features may improve the localisation accuracy.

An additional source of localisation errors is camera calibration. While negligible for high-quality cameras,
low-cost cameras require careful calibration to keep localisation errors low—in Section 8.5.2, even a fourth-
order radial-distortion correction leaves errors of 0.015 radians near to the image’s edge.

6.5 Conclusions

In this chapter, a robust procedure to estimate the relative pose of two cameras from correspondences
contaminated with gross outliers has been described. Inliers are identified using RANSAC, remaining outliers
are removed by top-down refinement, the relative pose of the cameras is refined to minimise Sampson’s error,
and the errors in the relative pose computation are quantified by fitting a model to simulated data.

In Chapter 4, the localisation errors of various corner detectors was measured. While high localisation errors
could increase the cost of relative pose computation, the accuracy of these detectors is sufficient for this to
be unlikely to be a problem.

As part of a real-time system, a major limitation of this combination of algorithms is its high computational
cost, which is dominated by the cost of the large number of RANSAC iterations needed in some circumstances.
In the following chapter a modification to the hypothesis set selection stage of RANSAC is proposed in order
to reduce this cost.

6.5.1 Further work

This section concentrated on two-view relative pose computation, and in some cases multi-view methods
would be more appropriate, and could result in lower errors, however BoWSLAM does not currently use
multi-view methods to compute relative pose. The largest errors from pose computation are seen when
reconstructing trajectories with rapid cornering; in this situation frames may not overlap sufficiently for
multi-view methods.

Many other implementation choices are possible, for example Mouragnon et al. (2009) follow RANSAC with
top-down refinement using a nonlinear optimisation rather than the 8-point algorithm; this would be worth
investigating in order to reduce errors from refinement, as the additional cost would be marginal. Other
improvements we plan to investigate include improving relative pose accuracy by actively searching for extra
correspondences when these are needed (as low inlier rates are very often associated with gross errors in
pose), and minimising robust functions of Sampson’s error (Trivedi, 1987) as an alternative to top-down
outlier removal.
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Chapter 7

The BaySAC sampling strategy for

speeded-up RANSAC

Abstract

RANSAC (Random Sample Consensus) is a popular algorithm in computer vision for fitting a
model to data points contaminated with many gross outliers. Traditionally many small hypothesis
sets are chosen randomly; these are used to generate models and the model consistent with most
data points is selected. Instead we propose that each hypothesis set chosen is the one most likely
to be correct, conditional on the knowledge of those that have failed to lead to a good model. Two
novel algorithms are described, BaySAC and SimSAC, to choose this most likely hypothesis set.
Both algorithms outperform previous improved sampling methods on both real and synthetic
data, sometimes halving the number of iterations required. In the case of real-time essential
matrix estimation, BaySAC can reduce the failure rate by 78% with negligible additional cost.

7.1 Introduction

RANSAC (Random Sample Consensus; Fischler and Bolles, 1981) is a popular algorithm in computer vision
for fitting a model to a set of data points contaminated by outliers. A minimal number of points necessary
to generate a model is randomly selected (a hypothesis set), a model is generated from these points, and the
number of other points consistent with this model are counted. This is repeated for many randomly selected
hypothesis sets until a model consistent with a sufficient number of data points is found.

In the previous chapter, we described how RANSAC is used in BoWSLAM for computing relative camera
poses. RANSAC can be computationally expensive however, due to the large number of iterations which are
often required. In this chapter we propose improvements to the hypothesis set selection stage of RANSAC,
in order to reduce the number of iterations needed.

Traditionally, hypothesis sets are chosen randomly. Instead, at each time we select the hypothesis set most
likely to lead to a good model. This deterministic selection process uses information gained by having tried
and failed to find a good model from previous hypothesis sets, together with any prior information we might
have on inlier probabilities. This innovation reduces the number of iterations needed to find a good model,
hence reducing the computational cost. For real-time applications where the number of iterations is bounded,
the probability of failing to find a model is reduced. Results in this chapter were originally published by
Botterill et al. (2009b).

This chapter is organised as follows: Section 7.2 describes RANSAC, its applications in computer vision,
and previous attempts to improve hypothesis set sampling, Section 7.3 describes our new algorithms for
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D Number of data points
n Hypothesis set size
I Set of all inliers
t Time (number of sets that have been tested)
Hi Hypothesis set of n data points used at time i
H = {H1, H2, ..., Ht} History of failed hypothesis sets
Π = {π1, π2, ..., πD} Prior inlier probabilities

Table 7.1: Notation

generating hypothesis sets, Section 7.4 presents results on simulated and real data, and Section 7.5 discusses
these results.

7.2 Background

The original RANSAC algorithm (Fischler and Bolles, 1981) proceeds as follows:

1. Hypothesise: Randomly select n data points, where n is the minimum number needed to generate a
model. Generate model from these points.

2. Test: Count the number of data points consistent with this model.

3. Repeat until a model consistent with a large number of data points is found. If the model is correct
these data points are inliers.

In this chapter we select hypothesis sets of size n from a set of D data points. I is the set of all inliers
that we aim to find, and Ht the hypothesis set at iteration t. Π = {π1, π2, ..., πD} denotes the prior inlier
probabilities of each data point. This notation is summarised in Table 7.1.

There are many applications for RANSAC, these include finding the homography relating two views of a
planar scene for image mosaicing (Chapter 10), fitting 3D models to 3D point clouds from a laser scanner
(Schnabel et al., 2007), robot localisation from ambiguous landmark observations (Yuen and MacDonald,
2005), and linear regression (Rousseeuw and Leroy, 1987, for example to find a ground plane). As described
in the previous chapter, one of the best known applications is for simultaneously finding the fundamental
matrix (or essential matrix in the case of calibrated cameras) relating correspondences between two images
with the relative pose of the cameras, and to identify and remove bad correspondences.

Several variations on RANSAC have been proposed, where RANSAC is run for a very large number of
iterations, or on data when outlier rates are low. In this situation, many all-inlier sets are found, and the
best of these inlier sets is selected. However, as shown in the previous chapter, and by Lacey et al. (2000)
and Chum (2005), an approximately-correct inlier set can be improved efficiently using a top-down approach.
In practice this is considerably faster than RANSAC, so for real-time applications, RANSAC should only be
used to find an approximately-correct inlier set as quickly as possible, and this solution should be refined.

Examples of these RANSAC variations include MLESAC (Maximum Likelihood Estimation Sample Consen-
sus; Torr and Zisserman, 2000), where the model with the highest estimated likelihood is selected, rather
than the one with the highest inlier count, and LMS (Least-Median of Squares; Rousseeuw and Leroy, 1987),
where the model minimising the median error of the data is selected. Both of these algorithms are variations
on the model selection stage of RANSAC. Results in this chapter apply only to the hypothesis generation
stage, so are equally valid for MLESAC and LMS.
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7.2.1 Previous hypothesis set selection schemes

The computational cost of RANSAC is proportional to the number of iterations, which is the number of
hypothesis sets that are chosen before a good enough model is found. The original RANSAC hypothesis set
sampling strategy assumes that all data points are equally likely to be inliers, and hence all hypothesis sets
are equally likely to contain only inliers, so the order in which they are considered is irrelevant. In practice
however, the probability of data points being inliers can often be estimated prior to carrying out RANSAC.
When matching descriptors between images for example, correspondences are less likely to be correct if there
are other potential matches with points that appear almost as similar. This information can be used to
assess the relative likelihood of hypothesis sets. To minimise the time taken to find an all-inlier set leading
to a good model, hypothesis sets should be evaluated in order of decreasing likelihood. Alternatively, the
same ordering will also maximise the probability of finding an all-inlier set for real-time applications, when
the time available is bounded.

The Guided-MLESAC algorithm (Tordoff and Murray, 2005) uses a function of feature correlation strength
(derived by fitting a heuristic model to test data) as a measure of prior inlier probability. When choosing
random hypothesis sets each correspondence is chosen with selection probability proportional to its prior
probability. Together with other innovations this is shown to reduce the time to find a model.

Chum and Matas (2005) present an alternative sampling strategy known as PROSAC (Progressive Sample
Consensus) based on the same idea. Data points are sorted by some measure of inlier likelihood, avoiding
the need to estimate actual probabilities. First the n most likely data points are chosen, then the point
n + 1 and the

(

n
n−1

)

= n possible sets of n − 1 data points of the first n in some random order, and so-on.
This allows hypotheses to be chosen in approximate order of their prior likelihood. In one feature-matching
experiment, where a small number of data points are very likely to be inliers, and a very large number are
not, PROSAC reduces the number of iterations needed by a factor of 10,000.

These sampling strategies are heuristic and are based on data point inlier probabilities rather than the
likelihood of hypothesis sets consisting entirely of inliers. In Section 7.3 we describe our new sampling
algorithms which combine inlier probabilities with information from previous outlier-contaminated hypothesis
sets to allow the (usually) deterministic choice of the most likely hypothesis set on each iteration, and which
determine the best order in which hypothesis sets should be tried.

7.3 Proposed conditional sampling methods

Previous sampling methods fail to take into account the information gained by testing hypothesis sets and
finding them to be contaminated by outliers. In this chapter we propose two methods to take this into account,
based on the following observation: given a hypothesis set H that leads to a model that is consistent with few
data points, this is assumed to be because it contains one or more outliers (the possibility that it contains
a degenerate configuration of inliers will be considered later). Trying the same set again is a waste of time
(although this is unlikely to happen with any reasonable number of likely data points). However, hypothesis
sets with one or more data points in common with H are also now less likely, as they are likely to include the
same outlier(s) that contaminated H . Note that this is true for any set of prior probabilities, in particular
the original RANSAC random sampling algorithm which assumes constant prior probabilities.

Ideally, at every iteration the hypothesis set that is most likely to contain no outliers based on the prior
probabilities Π and the history of contaminated samples H will be chosen. Unfortunately a closed-form
solution for this posterior probability is algebraically intractable, even for the simplest non-trivial case
n = 2 (as every intersecting pair of contaminated hypothesis sets introduces covariances between the inlier
probabilities of all of their data points). Instead we present two methods of approximating this probability,
both of which are shown to work well in practice. The aim of each of these methods is to choose Ht at time
t such that P (Ht|H,Π) ≥ P (H |H,Π) ∀H . This strategy minimises the number of hypotheses that must be
tested before finding one consisting entirely of inliers.
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7.3.1 Näıve Bayes method—BaySAC

The first proposed method, BaySAC, assumes independence between inlier probabilities of data points in
the same hypothesis set. On the first iteration, the n data points with the highest inlier probabilities are
selected as the hypothesis set. This is the most likely under the independence assumption. After testing a
hypothesis set Ht and finding that it is contaminated with outliers, the inlier probabilities of each data point
is updated using Bayes’ rule. The same procedure is repeated to select the next hypothesis set, using the
new inlier probabilities. Probabilities are updated as follows:

Pt(i ∈ I) = Inlier probability for data point i at time t

=

{

Pt−1(i∈I)P (Ht*I|i∈I)
P (Ht*I) i ∈ Ht

Pt−1(i ∈ I) i /∈ Ht

(7.3.1)

where P (Ht * I) = 1− P (Ht ⊆ I) = 1−
∏

j∈Ht

Pt−1(j ∈ I) (7.3.2)

P (Ht * I|i ∈ I) = 1− P (Ht ⊆ I|i ∈ I) = 1−
∏

j∈Ht:j 6=i

Pt−1(j ∈ I) (7.3.3)

= 1− P (Ht ⊆ I)/Pt−1(i ∈ I) (7.3.4)

⇒ Pt(i ∈ I) =

{

Pt−1(i∈I)−P (Ht⊆I)
1−P (Ht⊆I) i ∈ Ht

Pt−1(i ∈ I) i /∈ Ht

(7.3.5)

BaySAC uses these equations to update inlier probabilities:

Do

1. Choose n data points most likely to be inliers

2. Use Equations 7.3.2 and 7.3.5 to update the inlier probability of these points

until a sufficiently large inlier set is found

BaySAC is fast, and works well when there are few large intersections between sets. It works poorly in some
cases when there are a small number of data points of which many are of very similar or equal probability,
as following a Bayes update they’re still equiprobable, and are therefore likely to be selected in the same
hypothesis set again. This is not a problem for larger D as long as equiprobable data points are selected at
random when they make the hypothesis set choice ambiguous.

7.3.2 Simulation method—SimSAC

An alternative way to compute data point inlier probabilities is by simulation. Choose random inlier/outlier
statuses for each data point, check whether these statuses are compatible with having failed to observe an
inlier set so far, and if so, accumulate a histogram of inlier counts for each of the D data points. The n
highest peaks in this histogram form the most likely inlier set. SimSAC proceeds as follows:

1. Do

- Simulate random inlier/outlier statuses x1, ..., xN ∈ {0, 1} based on prior inlier probabilities (so
that P (xi = 1) = πi).

- If ∀H ∈ H ∃ h ∈ H such that xh = 0 then increment a counter for each simulated inlier.

until we have found T compatible simulated sets.
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2. Choose the n data-points that were most frequently inliers as our next hypothesis set.

SimSAC works by sampling from the prior distribution of inlier/outlier status vectors, then updating this
sample conditional on observing hypothesis sets that contain outliers (indicating that many possible status
vectors were not correct). Finding the peaks in a histogram from accumulating these status vectors gives
us the n data points that are individually most likely to be inliers, conditional on the failed hypothesis set
history. Assuming independence between inlier probabilities for the most likely inliers at time t (a much
weaker assumption than the Näıve Bayes assumptions in BaySAC), this algorithm will give us the actual
most likely hypothesis set at each time, as T →∞. A simulation scheme avoiding this assumption would be
to find the inlier/outlier status vector that is most frequently observed conditional on it being drawn from
the prior distribution, and being compatible with the observed history. An implementation of this scheme
as described would take time and memory Ω(exp(D)), as a large fraction of possible status vectors (of which
there are 2D) must be simulated many times, which would be feasible for only the smallest problems.

While SimSAC is much slower than other approaches, and still has high complexity (Section 7.4.3), for some
practical applications it may be considerably faster than model generation. For these applications, choosing
T = 10 samples provides a method to choose one of the more likely hypothesis sets. A value such as T = 1000
provides a ‘ground truth’ reference—it is unlikely any feasible algorithm can perform substantially better
than this.

7.3.3 N–M correspondences

When searching for correspondences between two frames, multiple (N) features in one image often appear
sufficiently similar to multiple (M) features in the other that they could be the same feature. The standard
approach to this situation is to limit the image distance between features in the two images, and/or to
reject all correspondences with multiple similar-looking potential matches (Torr and Murray, 1997; Nistér
et al., 2006; Brown et al., 2004). The problem with this approach is that in visually poor or self-similar
environments too few good correspondences may remain for scene geometry to be recovered accurately, if
at all. Also limiting track lengths introduces difficulties in registering frames during rapid camera motion
or following loop closure. Figure 7.1 shows two images where 2–2 and 3–3 correspondences help to obtain
enough inliers over a wide enough area to recover camera motion. As a result, visual navigation systems are
rarely demonstrated in highly self-similar, or visually poor environments.

A better solution to this problem is to introduce correspondences between all possible pairs of points. This
leads to N ×M correspondences of which at most min(N,M) are correct. If N ≤M , and the probability of
one of these points i in the first image matching any of the M points in the second is p, then the probability
that correspondence (i, j) is an inlier is assumed to be p/M . In general, the probability that (i, j) is an inlier
is p/max(N,M).

To make use of these probabilities, a simple adaption to avoid choosing incompatible correspondences is
made: if (i, j) is an inlier, (i, k) and (l, j) are not inliers ∀ k, l. Note that unlike other sampling strategies
(RANSAC and Guided-MLESAC) it does not matter that many correspondences with low probabilities are
introduced, as they will only be selected as part of hypothesis sets once sufficient evidence has been observed
to indicate they are more likely to be correct than correspondences with higher prior probabilities.

If (i, j) ∈ Ht, and Ht is contaminated by outliers, the posterior probabilities of {(i, k), (l, j) ∀ k, l} are
slightly increased, as these inlier probabilities are disjoint. The probability of other correspondences that
are incompatible with {(i, k), (l, j)} should also be slightly reduced but this amount is negligibly small.
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Figure 7.1: Frames from a video sequences used for essential matrix estimation with insufficient 1-1 corre-
spondences for these to be used alone. Of the 6 potential correspondences shown at most 3 are correct.

Equation 7.3.5 is adapted to take this into account as follows:

Pt((i, k) ∈ I|(i, j) ∈ Ht) = P ((i, k) ∈ I|(i, j) ∈ I)P ((i, j) ∈ I|(i, j) ∈ Ht) (7.3.6)

+ P ((i, k) ∈ I|(i, j) /∈ I)P ((i, j) /∈ I|(i, j) ∈ Ht)

=
Pt−1((i, k) ∈ I)

(1 − Pt−1((i, j) ∈ I))
(1− Pt((i, j) ∈ I)) (7.3.7)

because (i, j) ∈ I ⇒ (i, k) /∈ I ⇒ P ((i, k) ∈ I|(i, j) ∈ I) = 0 (7.3.8)

7.4 Results

This section presents results to validate SimSAC and BaySAC using both simulated data and real data
(for the case of essential matrix estimation). When considering N–M correspondences, all algorithms are
modified to avoid selecting hypothesis sets which cannot possibly contain only inliers: correspondences are
not selected if a previously selected correspondence shares an endpoint.

7.4.1 Results on simulated data

To test our new sampling algorithms, the inlier/outlier statuses of D data points are simulated with some
prior probabilities Π. We then sample repeatedly using one of our sampling strategies until a set consisting
entirely of inliers is found. Table 7.2 shows the mean number of iterations (and a 99% confidence bound on
this mean) needed to find a hypothesis set containing only inliers, using 50 datapoints, and choosing sample
sets of size 5.

Three prior probability distributions are used:

Constant(p) Original RANSAC—prior probabilities all equal a constant p (p = 0.5 is shown in Table 7.2,
similar results are observed for p = 0.25 and p = 0.75).

Unif(a, b) Prior probabilities are uniformly distributed in the range (a, b). Results using Unif(0.25, 0.75)
are shown in Table 7.2—this distribution may apply to the situation where correspondences are correct
with probabilities of up to 0.75 if the feature matcher response is strong, together with a lower bound
on allowed match quality. Very similar results are observed for probabilities from Unif(0, 1).

N-N(p,N) Prior probability of one data point having a match is constant (p = 0.6 for these experiments),
but sets of k points each have k match candidates (P (match) = p/k, k ∼ Unif[1, ..., N ]).
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Figure 7.2: BaySAC and SimSAC with T = 1000 reduce the number of iterations needed to find an all-inlier
hypothesis set.

Additionally, as prior probabilities are hard to estimate in advance (Chum and Matas, 2005), simulations
are carried out where true prior probabilities are uniformly distributed about the estimated values from
0.25 below to 0.25 above (subject to staying within (0, 1)). There is also a possibility that degenerate
configurations, incorrectly assumed to contain outliers, will cause a sampling strategy to fail. To simulate
this, all-inlier hypothesis sets are assumed to fail with probability 0.25. The number of iterations needed
under these assumptions are shown in column ‘Uncertain Π’ of Table 7.2.

Table 7.2 only shows results for the values D = 50 and n = 5. Results are comparable for values of D
from 15 to 1000 and n from 2 to 10; Figure 7.2 shows the consistently strong performance of BaySAC and
SimSAC for values of D from 15 to 100, and n = 8, with prior probabilities from N-N(0.8, 2). Note the
periodicity in the BaySAC performance—when n divides D (or they have a high common factor) sets of n
equiprobable data points remain equiprobable, and hence are selected at the same time again following a
Bayes update. Run times are given–these are only directly comparable for a particular number of iterations
(before either succeeding or terminating) as different sampling strategies have different complexity, as dis-
cussed in Section 7.4.3. In these simulations RANSAC is terminated after 250 iterations if no inlier set is
found (termination is essential for real-time applications), and the success rate is recorded.

The results presented include the mean number of samples drawn when a hypothesis set is found, a 99%
confidence bound on this mean and the proportion of samples where no inlier set was found. SimSAC with
T = 1000 outperforms all other methods, but is considerably more costly. BaySAC performs almost as well,
and performs considerably better that Guided-MLESAC sampling, RANSAC sampling or PROSAC sampling
in most cases. Inaccurate prior probability estimates have surprisingly little effect on results. Improvements
from our new algorithms are marginal if prior probabilities are constant (although are more significant when
D is small, e.g. D = 20), but large improvements are gained when prior probabilities can be estimated.

The case when BaySAC does not performs quite as well is with N − N correspondences. This is the one
case where there is significant room for improvement—no other algorithm comes close to matching the 20
iterations needed by the simulated sampler with T = 1000.

Note that PROSAC sampling often performs poorly, particularly with constant prior probabilities, where
its performance is considerably worse than with random sampling. This is because it repeatedly samples
from the same small set of data points, and when these are contaminated with outliers, many iterations are
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Sampling algorithm Prior Mean iters. Success Time Mean iters.
probabilities (99% bound) (%) (×10−6s) Uncertain Π

RANSAC Constant(0.5) 43.28 ± 0.16 96 0.34 51.77 ± 0.18
PROSAC Constant(0.5) 66.85 ± 0.29 53.2 0.447 70.1± 0.3
Guided-MLESAC Constant(0.5) 43.14 ± 0.16 95.9 0.661 51.57 ± 0.18
BaySAC Constant(0.5) 41.74 ± 0.16 96.2 1.04 50.41 ± 0.18
SimSAC (T = 10) Constant(0.5) 42.76 ± 0.16 96 7.26 50.82 ± 0.18
SimSAC (T = 1000) Constant(0.5) 41.71± 1.1 96.2 579 47.93± 3.9

RANSAC Unif(0.25, 0.75) 43.34 ± 0.16 96 0.341 51.8 ± 0.18
PROSAC Unif(0.25, 0.75) 30.96 ± 0.16 90.9 0.625 34.21 ± 0.17
Guided-MLESAC Unif(0.25, 0.75) 32.39 ± 0.13 98.2 0.687 40.03 ± 0.15
BaySAC Unif(0.25, 0.75) 18.99 ± 0.12 96.4 1.42 23.37 ± 0.14
SimSAC (T = 10) Unif(0.25, 0.75) 21.51 ± 0.12 98.2 6.47 27.86 ± 0.14
SimSAC (T = 1000) Unif(0.25, 0.75) 16.47± 0.68 99 479 19.9± 2.3

RANSAC N-N(0.6, 3) 109.1 ± 0.43 29.5 0.386 112.7 ± 0.48
PROSAC N-N(0.6, 3) 48.61 ± 0.29 40.6 0.687 51.86 ± 0.31
Guided-MLESAC N-N(0.6, 3) 96.32 ± 0.35 44.5 1.07 101.2 ± 0.38
BaySAC N-N(0.6, 3) 58.8 ± 0.38 40.9 3.59 57.61 ± 0.38
SimSAC (T = 10) N-N(0.6, 3) 61.7 ± 0.29 56.3 10.1 65.82 ± 0.31
SimSAC (T = 1000) N-N(0.6, 3) 19.65± 1.4 31.9 509 28.79± 6.1

Table 7.2: Results on simulated data with D = 50 and n = 5.

Figure 7.3: Frames from the indoor and outdoor sequences used for essential matrix estimation

wasted trying small variations on contaminated hypothesis sets. PROSAC does not take into account the
information provided by previous failures.

7.4.2 Results on real data

In order to evaluate our new RANSAC variations on real data we use them to find the essential matrices
from the N–M correspondences (N,M ≤ 3) between consecutive pairs of frames from a 20 frame indoor
and a 204 frame outdoor video sequence (Figure 7.3). The prior probability model described earlier is used,
with p = 0.5. Each video was processed three times, and the mean number of times a good essential matrix
was found (one with at least 15 inliers, and within a threshold of the known camera motion) is given. The
number of iterations is limited to 250, and in practice we rarely terminate much earlier than this (as inlier
rates are not high enough). As a result, run times are almost identical (0.04s per frame pair). Table 7.3
shows that BaySAC finds the essential matrix more often than other methods, other than SimSAC with
T = 1000, however this takes 0.3s per frame pair so is too slow for real-time use. Note that ignoring prior
probabilities entirely (original RANSAC) results in poor performance.

We find around 400 potential correspondences per frame with N,M ≤ 3. Using only 1-1 correspondences
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Sampling Outdoors Indoors
algorithm Success rate (s.d.) Inliers Success rate (s.d.) Inliers
RANSAC 144.0/203 (1.0) 151 16.7/19 (0.5) 131
PROSAC 179.3/203 (5.0) 130 17.0/19 (0.0) 130
Guided-MLESAC 186.3/203 (3.4) 129 16.3/19 (2.6) 124
BaySAC 189.0/203 (0.0) 130 18.3/19 (1.1) 129
SimSAC (10) 185.0/203 (2.0) 130 17.7/19 (1.1) 122
SimSAC (1000) 191.3/203 (1.9) 131 18.7/19 (0.5) 131

Table 7.3: Essential matrix estimation—N−M correspondences from pairs of consecutive frames from indoor
and outdoor video sequences

Figure 7.4: BaySAC successfully avoids outlier correspondences from moving objects. The red dots indicate
detected features, and the green lines indicate the locations in the previous frame which features are matched
to. Despite the high density of features on the cyclist, following BaySAC no matches are found here.

results in around 50-150 correspondences, and regularly less than 25 inliers are found from these (an average
of 49 are found in the indoor sequence). We have found this level too low to recover an accurate camera
motion estimate from these videos.

BaySAC for robust sparse optical flow computation

Another application of BaySAC is to compute the perspective homography mapping a plane visible in one
image (for example the ground plane) to another. This perspective homography computation is described
in detail in Chapter 10. One application, which is still under development, and which is described in Hide
et al. (2010), is dense optical flow extraction to aid a position estimate computed from an IMU. A pedestrian
carries an IMU and an approximately down-pointing camera (these sensors are increasingly found in modern
mobile phones). From the perspective transformation found between a pair of frames, and the height of the
camera above the ground, the velocity and orientation change of the camera can be estimated, and these
can be combined in a Kalman filter with acceleration estimates from an IMU to enable accurate pedestrian
navigation with low drift.

The ground plane viewed by a pedestrian is often featureless or self-similar however, and the shadow and
legs of the pedestrian introduce moving objects. From N −M correspondences between patch descriptors
from a pair of frames however, BaySAC can successfully estimate the perspective transformation, as shown
in Figure 7.5.

A related application is UAV positioning using a camera and IMU. Figure 7.6 shows that BaySAC can suc-
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Figure 7.5: BaySAC used to estimate the perspective transformation between pairs of images of the ground.
Green lines show where features were matched to in the previous frame. Stationary features are matched
despite the pedestrian’s moving legs and shadow. Features on the pedestrian’s shoe are avoided while it is
moving, then matched when it is stationary on the ground.

Figure 7.6: BaySAC used to estimate the perspective transformations between undistinctive images of Antarc-
tic ice. N −M correspondences between patch descriptors are used for all of these figures.
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Figure 7.7: BaySAC fails to find a match between two images of different places which were incorrectly
matched using the BoW algorithm. Essential matrices are found between other matches.

cessfully identify inlier correspondences between photos of highly self-similar Antarctic snowfields, captured
from a UAV.

Application for pedestrian navigation

Section 5.5.2 described a pedestrian navigation sensor which used the BoW algorithm to match images
captured by a pedestrian to images with known locations. Incorrect matches were occasionally found however.
Hide and Botterill (2010) propose to use BaySAC to estimate the essential matrix relating the image captured
by the pedestrian, and its match from the database of surveyed images. This provides validation that the
match is correct (if it is incorrect, it is likely that no essential matrix will be found), and provides the relative
orientation of the two images, which may be used to correct heading errors in the IMU’s pose estimate. In a
small experiment, 500 frames captured by a pedestrian are matched to 500 frames in a heavily-overlapping
‘survey’ video of the same route, using the BoW algorithm. Out of 373 matches found, only one is incorrect.
This is also the only pair where BaySAC cannot find an essential matrix (Figure 7.7), hence validating that
the match is incorrect.

7.4.3 Run-times and complexity

Drawing a hypothesis set of size n using BaySAC has O(n logD) complexity (maintain a list of D data
points, sorted by their probabilities, update the probabilities of around n points at each iteration, and select
the top n). There is an initial setup cost of O(D logD).

Simulating inlier/outlier statuses for D data points takes time of O(D). Testing compatibility with a history
of size t takes time of O(tn). If prior probabilities truly reflect the inlier/outlier probabilities then few status
sets need to be generated to find one compatible with having not found an all-inlier set so far. This would
give SimSAC a total complexity of O(Dtn). However overly optimistic inlier probabilities lead to large
numbers of status sets being rejected, greatly increasing this complexity.

In BoWSLAM, RANSAC is used for real-time essential matrix estimation. The five-point essential matrix
estimation algorithm by Stewénius et al. (2006), which was described in the previous chapter, takes an
average of 1.0 × 10−4s to estimate an average of 5 matrices compatible with a hypothesis set. Validating a
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model for one data point takes 2.5 × 10−8s, and typically few data points need to be compared in practice
(Matas and Chum, 2005; Capel, 2005), making this a small component of the total cost. For this application,
BaySAC’s increased sampling costs are insignificant compared to the cost of model generation and testing
(taking about 1.5× 10−6s per sample with D = 50, n = 5; about 1% of the total cost).

For applications where model generation and verification is more expensive (for example trifocal tensor
estimation; Hartley and Zisserman, 2003) minimising the number of iterations required by using SimSAC
may be worthwhile, however the improvement in the case of essential matrix estimation is not great enough
to justify the increased cost of generating samples.

7.5 Conclusions

BaySAC is an effective way to speed up RANSAC when prior probabilities can be estimated. In some
cases, BaySAC halves the number of iterations required by simple RANSAC sampling, and it significantly
outperforms other sampling algorithms based on estimated prior probabilities. Performance is good even
when prior probability estimates are only approximately correct.

In the case of essential matrix estimation, BaySAC and SimSAC can make effective use of N −M correspon-
dences between sets of multiple points. This allows improved performance in visually poor and self-similar
environments, decreasing the probability of failing to find an essential matrix connecting two cameras by
78% in one example. BaySAC and SimSAC can also reduce the number of iterations needed when data
points are assumed equally likely to be inliers, as in the original RANSAC algorithm, although the speed-up
is marginal unless model generation is particularly expensive.

7.6 Further work

In this chapter hypothesis sets of correspondences were chosen which were most likely to be correct, assum-
ing that 1− 1 correspondences’ inlier probabilities were independent. When matching invarient descriptors
such as SURF or oriented patches however (described in Chapter 4), these probabilities are not independent,
and this dependence could potentially be used to further improve BaySAC. In the case of rotation-invariant
descriptors, the orientation at which a feature was extracted is known, and the differences in orientations
between correctly-matched descriptors should be similar. Similarly, with illumination-invariant descriptors,
the differences in illumination between matched features are likely to be similar for all of the correct corre-
spondences. We plan to incorporate these dependencies into BaySAC in order to increase the probability
that hypothesis sets consist only of inliers.
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Chapter 8

BoWSLAM: Bag-of-Words-driven

Single Camera SLAM

Abstract

This chapter describes BoWSLAM, a scheme for a robot to reliably navigate and map a
priori unknown environments, in real-time, using only a single camera. BoWSLAM can navigate
challenging dynamic and self-similar environments, and can recover from gross errors. BoWSLAM
combines the robust methods developed throughout this thesis with new uses for the Bag-of-
Words image representation; this is used to select the best set of frames to reconstruct positions
from; and to give efficient wide-baseline correspondences between many pairs of frames, providing
multiple position hypotheses. A graph-based representation of these position hypotheses enables
the modeling and optimisation of errors in scale in a dual graph, and the selection of only reliable
position estimates in the presence of gross outliers. BoWSLAM is demonstrated mapping a 25
minute 2.5km trajectory through a challenging and dynamic outdoor environment without any
other sensor input; considerably further than previous single camera SLAM schemes.

8.1 Introduction

This chapter describes BoWSLAM: a single camera SLAM scheme which enables a mobile robot moving
in three dimensions to position itself in a previously unknown environment. BoWSLAM combines the new
robust techniques developed in this thesis to enable the successful navigation of dynamic environments despite
erratic camera motion, corrupted position estimates, total disorientation, or large accumulated errors. A
map of the environment that has been explored is built and this map is refined and improved when places are
re-visited. To validate this approach, BoWSLAM is demonstrated mapping a 2.5km trajectory in real-time
through a dynamic environment, with no other sensor input, motion assumptions or odometry input. This
chapter is based on the paper by Botterill et al. (2011).

Two additional components are described in this chapter, which are developed in order to allow the naviga-
tion of difficult environments. Firstly, the Bag-of-Words (BoW) algorithm (Chapter 5), normally used for
detecting loop closure by recognising when locations are re-visited, is used in two new ways: for fast feature
matching, allowing multiple position hypotheses to be generated for each camera location, and for smart
selection of frames from which to compute each pose. Secondly a graph-based map of these relative position
hypotheses allows the selection and optimisation of only the most reliable position estimates, and allows the
perceived scale of the world to be modeled, and scale drift to be corrected, via a dual graph.
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BoWSLAM is substantially different from previous single camera navigation schemes: a high framerate is
not required, enabling a high-level representation of each frame to be built and multiple position hypotheses
to be calculated; few assumptions about motion are made, allowing navigation despite erratic camera motion
or gross errors in dynamic environments; and a novel graphical representation of relative positions and scales
allows selection of only the best position hypotheses in the presence of many gross outliers.

This chapter is organised as follows: the next section summarises contemporary approaches to navigation and
SLAM using computer vision, and describes the aims of this new approach; Section 8.3 describes BoWSLAM,
the new uses for the BoW algorithm, and how to use information from the additional position hypotheses
it generates; Section 8.4 presents results from positioning a camera with videos from difficult indoor and
outdoor environments; and the final section discusses our conclusions and future plans. Notation used in
this chapter is summarised in Table 8.1.

8.2 Summary of prior research

In Chapter 3 we reviewed a selection of the many schemes which enable robots to position themselves using
a single camera alone. These schemes often work in real-time, and over tracks of hundreds of metres, while
often producing maps accurate to within a few percent of ground truth. There are two major limitations of
these approaches however: firstly the environments explored are largely static, and rapid cornering (during
which single camera geometry is poorly conditioned) is largely avoided, however typical indoor or urban
environments where robots will one day operate contain moving people and vehicles; a robot moving through
these environments must cope not only with these dynamic objects, but also with erratic motion including
rapid cornering. To overcome these limitations, a successful SLAM scheme must function despite these
challenges, and critically, must be able to recover from gross errors in positioning.

The second limitation of many of these schemes (Lemaire and Lacroix, 2007; Dellaert and Kaess, 2006; Eade,
2008; Strasdat et al., 2010) is their high algorithmic complexity—the SLAM algorithms soon become too
costly for real-time operation as the mapped area grows. SLAM methods with lower cost and complexity
should be used for longer term navigation.

In Chapter 5, we observed that the key strength of a digital camera as a navigation sensor is the ability to
recognise when locations are re-visited, and that the BoW algorithm is generally very successful at efficiently
recognising when two images show the same scene. This observation is key to the operation of BoWSLAM,
which is described in the following section.

8.3 The BoWSLAM Single Camera SLAM Scheme

This section describes our new scheme, BoWSLAM. BoWSLAM uses new techniques, enabled by adding
every image to a BoW database, to overcome some of the limitations of previous single camera SLAM
schemes, allowing robust long-term positioning in visually challenging dynamic environments. This section
first gives an overview of BoWSLAM, then describe its individual components in detail.

All previous visual navigation systems operate in basically the same way: the camera captures an image
showing part of the same environment that was viewed previously; matches are found between features in the
new image and the same features in previous images; the camera’s new pose is calculated from these matches,
based on the assumption that some of the environment is static; and finally a map is built from the observed
features. BoWSLAM’s basic mode of operation is exactly the same; in addition to allow long-term robot
positioning in real-world environments, where moving objects and erratic camera motion make navigation
difficult, we have the following requirements:

Active loop closure detection To recover from gross errors, and to maintain a consistent and accurate
map for extended periods, the robot must detect when known locations are re-visited.
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Wide-baseline matching The capability to register frames captured from significantly different viewpoints
is essential where sequences of frames are unusable due to occlusion, motion blur, or erratic camera
motion, and following loop closure.

Robust estimation Position estimation must be robust in the presence of moving objects and in self-similar
environments.

Multiple position hypotheses Despite robust position estimation, errors will inevitably still occur. The
ability to reject these erroneous position estimates is essential for long-term navigation.

The leading framework for active loop closure detection is the BoW algorithm, as described in Chapter 5.
To use the BoW framework for loop closure detection some frames must be represented as bags-of-words.
In BoWSLAM all frames are represented as BoWs, this enables wide-baseline correspondences between any
pair of frames to be obtained cheaply and effectively from their BoW representations (Section 5.6). As
wide-baseline matching allows us to efficiently register any pair of overlapping frames, we can use any such
sequence of frames to position the camera. Frames from which to compute the relative position of the
latest frame are selected efficiently using the BoW algorithm and include loop closure candidate frames
from previous visits to a location, as well as the most suitable recent frames, hence allowing recovery after
periods of erratic motion or occluded frames. These new applications for the BoW algorithm are described
in Section 8.3.1.

When a frame is captured, feature points are detected and descriptors of the image around these points
are extracted (simple image patches centred on corners found using the FAST corner detector are used, as
described in Chapter 4). These descriptors are used to describe the frame as a BoW. We now use the BoW
database to find both nearby frames, and feature matches with these frames.

This set of correspondences will contain many outliers, for example from self-similar features and from moving
objects. Chapter 6 described how to compute and refine the relative pose of the cameras from these outlier-
contaminated correspondences by combining least-squares approaches with the RANSAC framework. This
approach can be slow however when outlier rates are high, so instead of RANSAC the BaySAC framework
described in Chapter 7 is used; this is shown to reduce the time needed to find an inlier set.

Given these relative pose estimates between pairs of frames, we can reconstruct the camera’s trajectory by
adding a sequence of these relative poses together. Any errors in one pose however will also affect subsequent
pose estimates. While small accumulated errors can be dealt with via the SLAM framework (Section 8.3.4),
gross errors will inevitably also occur. In order to maintain consistent maps and accurate pose estimates it
is essential to avoid using these erroneous pose estimates.

To eliminate erroneous pose estimates we compute the pose of each frame relative to each of several nearby
frames, leading to a graph of pose estimates (Figure 8.8). Two frames can be positioned relative to each
other in many different ways, via all of the different paths between them. From this graph we choose a small
subset of possible position hypotheses containing only the most reliable position estimates, hence minimising
the chance of incorporating erroneous position estimates into our map. This graph of multiple position
hypotheses, and the dual graph in which the scale drift that occurs in single camera SLAM is modeled, are
described in detail in Section 8.3.3.

Finally, in order to create a globally accurate map, we optimise a graph of independent relative position
estimates using the efficient TORO framework (Grisetti et al., 2007a). The TORO framework, and the
generation of the graph optimised by TORO, are described in Section 8.3.4.

In summary, BoWSLAM works by representing every frame as a BoW, then using the BoW representation
to select multiple nearby frames from which to compute relative positions. The latest frame is positioned
relative to each of these frames using the robust BaySAC framework together with correspondences from the
BoW algorithm. A subset of the multiple position hypotheses which is unlikely to contain any gross errors is
then selected and refined to accurately position the camera in a global map. An overview of the BoWSLAM
algorithm is given in Figure 8.1, and the following sections describe each component in detail.
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For each frame:

1. Add new frame to BoW database:

• Capture new frame from camera

• Detect corners and extract features

• Add image to BoW database

2. Select recent frames for relative positioning, and potential loop closure candidates. For
each of these frames:

• Find BoW feature correspondences with current frame

• Compute pose relative to several previous frames

• Reconstruct 3D landmark positions (up to scale ambiguity)

• Align landmark positions with earlier observations to resolve scale change and reconstruct camera
positions

3. Update graph to select best pose estimate for every frame

Figure 8.1: Overview of the BoWSLAM Algorithm

Table 8.1: Notation used in this chapter. See also Figure 8.7.

Camera i Pose of the robot’s camera at time i
T Total time, equivalent to the total number of frames
sij ‘Scale’–magnitude of motion between cameras i and j; related to velocity
δijk Distance moved between times j and k relative to distance i to j; related to acceleration
dijk , gijk Parameters of the distribution of δijk ∼ Log-N (dijk , gijk)
Dijk, Gijk Parameters of the distribution of sij ∼ Log-N (Dij , Gij)
Q Pose graph: nodes are camera positions and edges are relative pose estimates
E(Q) Edge-vertex dual of Q; nodes are relative poses and edges are relative scale estimates
St(Q) t-spanner of Q; a subgraph of Q which preserves large cycles in Q

8.3.1 Feature description and the Bag-of-Words image representation

As described in Chapter 4, image patch descriptors centred on corner features provide good features for
finding matches between frames, and in Chapter 5 we showed that these are also effective features for loop
closure detection. We use patch descriptors centred on FAST corners, these are cheap to extract while
providing almost as good localisation accuracy and repeatability as more expensive features, such as Harris
corners. Patches sized 33× 33 pixels are down-sampled to 11× 11.

The highest-scoring FAST corners are chosen subject to a minimum separation constraint. Although mini-
mum separation constraints degrades repeatability, this turns out to be necessary to find sufficient features to
register images during rapid cornering. In some environments featuring rapid changes in scale, orientation-
invariant SURF descriptors may be used; however these are expensive to extract, preventing real-time
operation.

These features are extracted from every frame, which is then added to the BoW database, as described in
Chapter 5. This database can now be queried to find the most similar images to the latest image, and also
to find correspondences between pairs of these images.
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8.3.2 Computing relative positions

This section describes how BoWSLAM computes the position of a camera based on a sequence of frames
(the selection of this sequence is described in Section 8.3.3). First the relative position and orientation of
two frames is estimated, as described in Chapter 6. Next, the 3D positions of landmarks observed in these
frames are reconstructed. Finally the true scale of these landmarks, and hence the true motion of the camera
between frames, is computed by aligning these landmark positions.

Given two frames represented as BoWs, correspondences between them can be found efficiently by comparing
their BoW representations. These correspondences are contaminated by many gross outliers however, so to
compute the relative pose of the two camera positions the procedure described in Chapters 6 and 7 must
be used. This procedure uses the BaySAC framework to compute the relative pose of the cameras while
identifying points which are inliers. This inlier set is refined by top-down refinement (Section 6.2.4), then a
nonlinear optimisation is used to improve the relative pose estimate (Section 6.2.2).

Resolving Scale Change

Given a feature viewed in two frames, and the relative pose between the two cameras, the 3D position of that
feature can be reconstructed in the local coordinate frame of one of the cameras. As the cameras’ relative
position is known only up to an unknown scale factor, this feature’s 3D reconstruction is also known only up
to an unknown scale factor. If the feature is also viewed in an earlier frame we can align this reconstructed
feature with its earlier reconstructed position, hence calculating the ratio of these scale factors (Figure 8.2).
This scale factor is proportional to the distance between the two camera positions (the ‘baseline length’), so
estimating it relative to the previous scale factor gives us the distance moved by the camera relative to the
camera’s previous motion.

Figure 8.2: The point X is observed at times t and t+ 1. We know the relative pose of these cameras up to
an unknown scale factor, so can reconstruct X in the coordinate frame of camera t, up to an unknown scale
factor. If this point was also observed in an earlier frame (t− 1), we can calculate the ratio of the two scale
factors, δ, by aligning the points’ 3D reconstructions.

In the noise-free case, two reconstructions of the same feature in the same coordinate frame, Xi and X ′
i,

will fall on the same ray, i.e. Xi = δX ′
i ∀ i, where δ is the ratio of the two baselines, however in practice

reconstructed points contain substantial errors from several sources. These sources of error include small
errors in localising features in the image, which are amplified by stereo reconstruction; small errors in
computing the cameras’ relative poses; and errors from incorrectly-matched features that have not been
discarded, as they were approximately compatible with the relative poses computed earlier. To estimate the
scale change accurately despite these errors, we must combine multiple measurements while discarding any
outliers.

Given multiple matches between reconstructed 3D points, we first remove outliers by discarding point pairs
not within a certain angle of each other, as these do not fall on the same ray. We then calculate the scale
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Figure 8.3: The multiple relative scale estimates computed from aligning reconstructed 3D points form a
unimodal distribution with large variance, and a few gross outliers. This figure shows the distribution of
relative scale measurements for three different triples of frames. These distributions are assumed to be
approximately lognormal.

factor for each pair Xi, X
′
i, giving a set of K scale measurements {δi, i = 1, ...,K}. Typical distributions of

scale measurements in these sets are shown in Figures 8.3 and 8.4.

The change in scale between two frames is modeled with a lognormal distribution, δ ∼ Log-N (d, g2) (defined
by log δ ∼ N(d, g2); Croarkin and Tobias, 2010, Section 8.1.6.4). This distribution is a good approximation for
observed data (much better than the normal distribution; Figures 8.5 and 8.6), and has the useful properties
that the product and inverse of lognormally-distributed variables are also lognormally distributed. d and g
are estimated from {log δi} by first removing any remaining gross outliers using Grubb’s test (Croarkin and
Tobias, 2010, Section 1.3.5.17), then taking d as the sample mean. As we have assumed {log δi} are normally
distributed, then d is approximately normal (d actually has a T-distribution), with variance:

g2 =
1

K(K − 3)

K
∑

i=1

(log δi − d)2 (8.3.1)

Accumulating relative positions and scales

The previous section describes how to calculate the speed of a camera relative to its previous speed, however
its absolute speed is unknown, as a global scale ambiguity exists when navigating using only a single camera
(without making assumptions about the speed of the robot or the size of observed objects). For now we
assume the first time the camera moved it moved a unit distance; all other motion is now represented in
terms of this distance. Other distances can now be calculated by multiplying sequences of relative scales
(Figure 8.7). As these relative scales are modeled as lognormally distributed random variables, then their
product sjk is also lognormal:

sjk ∼ Log-N (Djk, G
2
jk) (8.3.2)

⇔ log sjk ∼ N(Djk, G
2
jk) (8.3.3)

where Djk = Dij + dijk , Gjk = Gij + gijk (8.3.4)

We have now calculated the relative pose of each pair (Section 8.3.2) and have parametrised the length
moved at each time by sjk ∼ Log-N (Djk, G

2
jk). Now every frame can be positioned relative to the first
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Figure 8.4: As relative scale estimates are assumed to be approximately lognormal, their log is approximately
normal. This figure shows the distribution of logged relative scale measurements for the same three triples
of frames as Figure 8.3.

frame’s position by accumulating these relative pose estimates, with lengths sjk given by the median of the
lognormal distribution, eDjk . This method allows a map to be built from any sequence of poses.

8.3.3 Graph-based representation of multiple position hypotheses

This section describes how wide-baseline feature matching and the BoW algorithm allow BoWSLAM to
compute multiple position hypotheses for each frame, and how the graph these position hypotheses form is
used to select only the most reliable position estimates, in the presence of gross outliers.

Most contemporary visual navigation schemes track features over consecutive pairs of frames (e.g. Nistér
et al., 2006; Davison, 2003; Eade and Drummond, 2008; Strasdat et al., 2010). If camera motion is smooth
and the frame rate is high enough there will be large overlap between images, and features move only a
short distance, allowing feature tracking by searching a small area where they are predicted to lie. These
assumptions are not true in general however; real video sequences often contain sequences of frames with
insufficient information for accurate matching (for example blank walls), sequences corrupted by dynamic
objects (people walking in front of the camera), or sequences of rapid movement with either motion blur
or insufficient overlap for reconstruction. Ideally each frame should be positioned relative to a frame with
which it has large overlap (and many of the same landmarks visible), significant camera motion (for well-
conditioned reconstruction), and few dynamic objects. These frames are chosen by using the BoW algorithm
to select frames with many features in common with the current frame. From these candidate frames we
choose those that already have accurate position estimates. This BoW sampling strategy avoids selecting
frames to register to that contain too many dynamic objects or are blurred (as these could not be positioned
previously), and avoids frames with insufficient overlap as these do not generate a strong BoW match. At
the same time potential loop closure candidates are chosen—these must match the current frame at least
as strongly as several recent frames. When the camera is stationary, moving slowly, or revisiting an earlier
location, the baseline (the distance between two poses) can be too short for accurate 3D reconstruction. In
this case, no new position estimates are calculated until the camera has moved sufficiently for an accurate
position to be calculated. This automatically keeps the map sparse when repeatedly visiting the same place,
an important requirement for long-term navigation in a bounded environment (Mouragnon et al., 2009).
While these nearby frames are currently identified after the transform between them has been estimated,
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(a) Q-Q plots showing how well scales are approximated by a normal distribution.

Figure 8.5:
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(b) Q-Q plots showing that logged scales are approximately normal; hence the lognormal distribution
is an appropriate model.

Figure 8.5: The lognormal distribution is a good approximation for relative scale estimates. Q-Q plots
(Thode, 2002) show how well data is approximated by a particular distribution. The quantiles of the data
are plotted against the quantiles of a normal distribution; the closer points are to a straight line, the better
the approximation. For these three examples of real data, the log of the scale measurements (b) is slightly
better approximated by a normal distribution than the scale measurements (a).
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Figure 8.6: Q-Q plots of relative scale estimates and logged relative scale estimates from aligning simu-
lated 3D points (10,000 points before outliers were removed). The lognormal distribution is a much better
approximation than the normal distribution for the scales.

Figure 8.7: The distance between each pair of cameras j and k, sjk, is calculated by accumulating relative
scale estimates, δijk. Note that errors in the estimate of δijk will accumulate in subsequent scale estimates
(and hence scale estimates are correlated). The dashed edges form the edges in the Edge-Vertex dual E(G).
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(a) When a new frame is captured first choose candidate
frames from which to compute relative position hy-
potheses.

(b) Add position hypotheses—the sequence of relative
positions most likely to be outlier-free (highlighted)
is used to position the new frame; another position
hypothesis (dashed) is not used for now.

Figure 8.8: Camera positions form a graph with edges representing relative position hypotheses. (a) To add
a new frame at time t (dashed) suitable candidates to position it relative to are selected. (b) The new frame
is positioned relative to several other frames, leading to several position hypotheses. Of these hypotheses the
position most likely to be outlier-free is selected. These positions are updated as more position hypotheses
become available.

they could be found cheaply with a near-duplicate image detection scheme, for example the histogram-based
scheme by Chum et al. (2007).

This strategy results in each camera position being computed relative to several (typically one to four) other
camera positions, giving several position hypotheses. These multiple position hypotheses naturally form a
graph, with video frames corresponding to nodes and position hypotheses relative to other frames’ locations
corresponding to edges (Figure 8.8). Each edge has a set of associated 3D landmarks which are visible in
the two frames it connects. Every path connecting two frames in this graph gives a sequence of relative
position estimates; the relative position of these two frames is given by accumulating the relative position
estimates along one of these paths. This graph is similar to the graph in the Atlas framework (Bosse et al.,
2004) with edges representing transformations. In BoWSLAM every video frame corresponds to a node (as
in Newman et al., 2009), so that transformations connect robot poses, in contrast to Bosse et al. (2004);
Eade and Drummond (2007) where nodes represent local coordinate frames with associated landmarks.

We now have a pose graph, Q, with each frame positioned relative to several nearby frames. This provides
a large number of possible paths by which two frames can be positioned relative to each other. The Atlas
framework provides an efficient way to choose a good path between any two frames by assigning appropriate
quality weights to each edge then finding the ‘shortest’ (highest quality) path between the frames, however in
the case of single camera SLAM, estimates of relative scale must also be taken into account. These relative
scale estimates are dependent on sequences of relative poses, leading to constraints between pairs of edges
in Q. These relative scale estimates are modeled using the dual-graph approach described in the following
section.

Dual-graph representation of relative scale

When positioning using a single camera, we find the principal sources of error are gross outliers (usually
due to dynamic environments, or from failing to detect remaining outlier correspondences) and scale drift,
as errors in relative positions are proportional to errors in the estimated scale, and errors in orientation
are typically low by comparison. When gross errors in relative pose do occur, they normally lead to gross
errors in the corresponding relative scale estimate. Therefore we aim to choose the path through the pose
graph Q that is least likely to contain gross errors in relative scale estimates. Relative scale estimates are
not associated with edges in Q however; instead a relative scale estimate is associated with every pair of
edges meeting at a node (Figure 8.7), i.e. is associated with edges in a new graph, the ‘edge-to-vertex dual’
E(Q) of the pose graph Q (or ‘line graph’; Balakrishnan, 1997, Chapter 2). Vertices in E(Q) correspond to

128



edges in Q, and edges in E(Q) connect two vertices if the corresponding edges in Q meet at a vertex. Each
edge in E(Q) has an associated relative scale δijk ∼ Log-N (dijk , g

2
ijk), and connects vertices corresponding

to relative positions from i to j and j to k.

Edges in E(Q) are assigned weight g2ijk, then the ‘shortest’ path P between two nodes in E(Q) provides
a sequence of relative scales from which the relative lengths of the two relative poses is estimated. This
scale estimate has distribution Log-N (D,G2) where G2 =

∑

e∈P g2e by Equation 8.3.4. Note that P is the
sequence of edges minimising G2. The following observations justify this weighting:

1. If a scale sijk ∼ Log-N (dijk , g
2
ijk) is parametrised from two point setsX and Y , then the scale computed

in the opposite direction has the distribution skji =
1

sijk
∼ Log-N (−dijk, g2ijk). Therefore edges have

the same weight regardless of the order or direction they are traversed1.

2. If the measured relative scales were truly lognormal random variables sijk ∼ Log-N (dijk , g
2
ijk), then P

is the path giving an estimate of the log of the true scale with expected error less than the estimate
along any other path.

3. Gross errors in relative position and orientation normally lead to few accurately reconstructed points
from which to recover scales, leading to higher g2 estimates by Equation 8.3.1. These edges will only
be used when no better relative position estimates exist.

4. An alternative weighting scheme would be to weight each edge in E(Q) by the negative log of its inlier
probability. The shortest path would then be the one least likely to contain an outlier, i.e. the most
robust position estimate. These weights would be equal if P (scale estimate is an inlier) = e−g2

. While
the true outlier probability is hard to measure and is threshold-dependent in real data, coincidentally
this equation does give realistic values of P (no outliers) of about 0.6-0.9 after travelling for 500 frames
without loop closure, and hence we believe it is a good strategy for minimising the probability of our
position estimates being contaminated by outliers.

As at most a fixed number of relative positions is introduced to Q at each time, the number of edges in Q,
and hence the number of relative-scale-edges in E(Q), is proportional to the number of frames, T . Therefore
a shortest path tree can be found in E(Q) in time O(T logT ) using Dijkstra’s algorithm. This shortest
path tree gives a good position estimate for every frame and hence a global map. Alternatively a locally
accurate map could be found in constant time by recursing to a fixed depth from the current node, in the
same manner as Mei et al. (2009).

Motion models and scale drift

While BoWSLAM can position a robot for extended periods without making assumptions about the robot’s
motion, in some visually challenging environments significant scale drift accumulates and introduces errors
into global maps (for example Figure 8.16(a)). This scale drift arises primarily from a small number of
relative scale estimates where few 3D points are matched between successive frames; these unreliable scale
estimates are incorporated into the map only when no better scale estimates have been found (usually when
cornering rapidly). One solution to reduce this scale drift is to impose a weak motion model on relative scale
estimates. Two possible motion models are proposed in this section. The first models the acceleration, and
the second models the perceived depth of points in the world.

The first motion model is based on the assumption that the camera velocity is approximately constant over
short periods of time. This motion model is implemented by assuming that the relative acceleration over
short period of time is lognormally distributed about zero.

1When D is calculated along a path in E(G), and rotations and translations are accumulated along a path in Q the direction
edges are traversed is relevant, this is implemented in an undirected graph simply by assigning each edge a relative pose/scale
in one direction (the direction of increasing time) then reversing it if traversed in the opposite direction.
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Relative scale estimates are modeled as lognormally distributed variables, which are parametrised by aligning
reconstructed 3D points (Section 8.3.2). When a scale is computed from three frames, i, j and k, which are
temporally close, we assume these relative scales are lognormally distributed about the scale corresponding
to zero acceleration as follows:

δijk ∼ Log-N (log
∆jk

∆ij
, G2

MMmax(∆ij ,∆jk)) (8.3.5)

where ∆ij is the time difference between frames i and j, andGMM controls how tightly speeds are constrained.
This distribution is combined with the distribution for δijk from aligning points. GMM is chosen so that
when many points are observed, the scale from observing the points dominates, and when few are observed,
the motion model dominates. This motion model is weaker than other single camera SLAM motion models as
only the camera’s relative acceleration is constrained. Even so, like other SLAM schemes, it could potentially
limit camera acceleration after the camera has slowed. In this circumstance however, position estimates from
many recent frames are normally available, as there is high overlap between consecutive frames when the
camera moves slowly. If sufficient 3D structure is aligned over any of these triples of frames then this scale
estimate will dominate.

This motion model reduces scale drift, but does not eliminate it; errors will still accumulate. An alternative
motion model is based on the observation that reconstructed points in the world typically have depths in
a particular range, for example 0.5m to 20m for a pedestrian outdoors. The mean depth of reconstructed
points is proportional to the baseline length (which is assumed to be lognormally distributed), therefore
by modelling the depth of reconstructed points with a lognormal distribution and combining this estimate
with the depths from SLAM an absolute constraint on scales can be imposed. As sequences of scales are all
dependent (by Equation 8.3.4), an uninformative distribution can be used, leading to many small updates
that together eliminate scale drift over long sequences of frames. This constraint is similar to constraints on
the depth of observed points imposed by some other single camera SLAM schemes (Davison, 2003; Lemaire
and Lacroix, 2007).

8.3.4 Loop closure and map optimisation

Loop closure in a graph-based map is very simple—an edge is added in the same way as for other relative
position hypothesis. However when a loop is closed and a new global map is computed a break in a continuous
chain of positions in the middle of the loop often forms when poses for frames at either side of the break are
computed via different paths (Figure 8.9). This break will usually be far from the root edge from which the
graph’s shortest path tree is generated so a locally accurate map can always be constructed by setting the
root near to the current robot position, however sometimes a global map is required.

Our goal is to compute an accurate map from a set of relative pose estimates. Several solutions have
been proposed for the case when errors in relative poses are Gaussian and independent (described in detail
in Section 3.2.5). Those with lowest complexity (as low as O(T )) are based on relaxation, where nodes
positions’ are incrementally updated to reduce the total error in all relative pose estimates. BoWSLAM
used the 3D version of the TORO framework (Grisetti et al., 2007a) to generate global maps, as this is faster
than other relaxation frameworks, and can optimise 3D pose graphs.

There are two issues with using TORO with BoWSLAM’s maps however, the first is that TORO does not
model outliers, and one bad relative pose estimate can corrupt the entire global map. Optimising the entire
pose graph Q rarely results in a map resembling the ground truth, so instead we must select an outlier-free
spanning subgraph of Q. The most important property of this subgraph is that large cycles in Q should be
preserved. A suitable subgraph with this property is known as a t-spanner, St(Q). St(Q) is defined as a
spanning subgraph where two nodes separated by a distance k in Q are separated by a distance of no more
than tk in St(Q). For our pose graph, which has T nodes and O(T ) edges, a t-spanner with low total cost
(close to the minimum possible) can be found efficiently in time O(T logT ) using the algorithm by Althöfer
et al. (1993), outlined in Figure 8.10. A value of around 20 for t gives a subgraph consisting of the minimal
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(a) Loop closure detected (b) Position estimates updated

(c) t-spanner optimised

Figure 8.9: When loop closure is detected the latest frame can be positioned relative to a much earlier
frame (a). After loop closure, the ‘best’ position estimate for each frame is updated. This improves the
position estimates of a sequence of nearby frames relative to the latest frame (b). When a global map
is required a t-spanner of good position estimates preserving cycles is selected and optimised, closing any
distant gaps (c).

spanning tree, plus a small number of edges sufficient to preserve cycles larger than t; this is the subgraph
we optimise using the TORO framework.

A second problem with using TORO for single camera SLAM is that scale drift means that the independence
assumption between poses does not hold. Graphs containing significant scale drift remain distorted after
TORO optimisation. In Section 8.7 plans to develop a pose graph optimisation framework which optimises
scale estimates is discussed; for now a cyclic constraint on scales is imposed by SVD: around a cycle C,
∑

(ijk)∈C dijk = 0. While this optimisation has poor theoretical complexity, in practice it is fast, taking just
a few milliseconds in t-spanners, as long sequences of edges typically belong to the same set of cycles, so can
be temporarily replaced with a single edge.

The final requirement for optimisation are variances for each relative pose (full covariances are not used by
the 3D version of TORO). These are estimated by assuming pose estimation is locally linear, and fitting a
simple model to errors in simulated noisy data, as described in Section 6.4.3.

8.4 Experimental results

In this section we validate the BoWSLAM algorithm on simulated data, then demonstrate BoWSLAM’s
ability to position a camera in challenging indoor and outdoor environments on three datasets which include
long, complex paths with erratic motion, total occlusion, moving objects, and motion blur. The maps
presented show the robot’s trajectory; Figure 8.11 provides a key to these maps.
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Input: Weighted undirected graph Q
Output: Weighted spanning subgraph St(Q)

d(u, v,G) ≡ distance from u to v in graph Q

Find minimal spanning tree (Kruskal’s algorithm):

1. Create a forest, St, of T disconnected components, one per vertex

2. Create a list, E, of edges sorted in order of increasing weight

3. For each edge e ∈ E in order:

• If e connects two components, remove e from E and add to St to join components.

4. Now St is the minimal spanning tree of Q

Find t-spanner:

1. For each edge e = (u, v) in E in order:

• if d(u, v, St) > td(u, v,Q) then add e to St

St is now a t-spanner of Q with total weight close to the minimum possible.

Figure 8.10: Algorithm to find an approximate minimum-weight t-spanner in a graph (Althöfer et al., 1993).
This algorithm has complexity O(T logT ), as the number of edges is proportional to T , and determining
whether d(u, v,G) is less than a threshold has constant cost.

Figure 8.11: Key to maps: each frame with a pose estimate is marked with a small arrow showing its
orientation and position. The current robot position is marked with a red triangle, and the map’s root node
is marked ×; if the camera is upright, then the maps show the ground plane oriented with the root pose
pointing towards the top of the map. The maps’ scales are arbitrary.
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(a) Significant gap after first lap (b) No gap after second lap
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(d) Optimised map after 50 laps

Figure 8.12: Estimated positions of a simulated camera which travels around a square path, at variable
speed, while spinning about all three axes. A gap visible after the first lap is closed after the second, as more
accurate relative pose estimates become available. The final optimised map closely matches the square path.
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8.4.1 Validation on simulated data

Simulated data was used extensively in the development of BoWSLAM. In this section, simulated data is used
to demonstrate BoWSLAM’s ability to recover from positioning failure, and to demonstrate BoWSLAM’s
ability to position a camera in a small-scale feature-rich environment, with a range of speeds and imaging
conditions.

Firstly, we demonstrate 5 DOF positioning, and that the accuracy of position estimates does improve with
time. Sets of descriptors and locations are generated by projecting a random cloud of points into a sequence
of simulated images, adding point localisation noise of 2 pixels, then simulating descriptors (from 100 distinct
descriptors in total, so each will exactly match 1% of other descriptors incorrectly).

(a) After 100 frames, disconnected
map components have been fused,
but scale drift is high.
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(b) A gap remains after 1000 frames.
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(c) The optimised 20-spanner is dis-
torted, but consistent.

Figure 8.13: Estimated positions of a simulated camera. Despite very high error rates, a consistent map is
maintained.

Figure 8.12 shows maps generated with simulated data from a camera which spins around all three axes,
while travelling around a square at variable speeds. Typically between 20 and 100 features are matched
between each pair of consecutive frames, depending on the velocity. Maps generated using only a spanning
tree are shown (i.e. maps generated without any optimisation). After the first lap, a significant gap opens,
due to accumulated errors. On the next lap, better relative pose estimates are selected, and this gap is
closed. The gap remains closed for 50 more laps, despite occasional gross errors occurring in relative pose
computation. Slight systematic errors remain in the optimised trajectory.

Figure 8.13 shows maps generated on the same dataset, when 50% of matches are gross outliers, and point
localisation errors are increased to 3 pixels (0.01 radians). BaySAC now fails to find a relative pose containing
10% inliers approximately 50% of the time, and some poses which are computed contain gross errors (due
to outliers being included when inlier rates are low). The map after the first lap of the square consists of
two disconnected components, which are then fused when the loop is closed. The gap in the map from a
spanning tree is never closed, although TORO generates a consistent, although distorted map, which is free
of gross outliers.

In order to obtain images with known ground-truth, Funke and Pietzsch (2009) build a simple model of a
room (a cube with the same image pasted onto every wall), then use ray-tracing software to project images of
the environment into a simulated camera, which travels on a small loop. Effects such as motion blur can be
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Figure 8.14: Simulated frames from the SLAMDUNK dataset with added motion blur, covering a small loop.
The repeated image of banana boxes occasionally triggers false loop-closure.

simulated (Figure 8.14). On a 4m, 288-frame loop with added motion blur, their EKF-based stereo camera
SLAM scheme accumulates errors of about 0.45m while negotiating the loop, then corrects these errors when
the loop is closed. Figure 8.15 shows maps generated by BoWSLAM on this dataset. Comparable errors
accumulate (up to 0.5m) using just a single camera, the loop closure is rarely detected, as the frames contain
repeated images of banana boxes, so the frames where loop closure should occur do not match any more
strongly than other frames. A loop closure framework which incorporates the estimated camera position
would be able to detect this loop closure, however the repeated environment shown is not particularly realistic.
The smooth camera motion, and feature-rich images indicate that a motion model and feature tracking would
perform well, however BoWSLAM operates successfully without these. This dataset shows that BoWSLAM
has comparable performance to another SLAM scheme, in a situation where a conventional single camera
SLAM scheme would be expected to perform well.

These simulated images are unlike many real datasets however. In this simulated data we consistently find
large numbers of good correspondences, and if gross errors occur, they arise from repeated structures. Data
could be simulated to contain moving objects, or erratic motion, but it is never certain that this simulated
data is really representative of real data. Hence, we believe that the results on real data presented in the
remainder of this section provides a much better demonstration of BoWSLAM’s capabilities.

8.5 Results on real data

In this section we demonstrate that BoWSLAM can robustly navigate difficult environments with three
datasets, each processed off-line.

The first dataset is captured at 2.8Hz from a handheld Canon 400D SLR camera in a suburban environment
(Figure 8.17). Images are greyscaled, normalised, and down-sampled to 640 × 426. After travelling 1.6km
the camera is stopped, then restarted elsewhere. A couple of minutes later the new path re-joins the original
path. The sequence includes many pedestrians and cars, and three frames show only of the side of a passing
bus.

Without assuming any motion model, BoWSLAM successfully positions the robot along the first path,
producing locally consistent maps (Figure 8.18a). Loop closure is detected every time the path re-visits an
earlier location. When the camera is stopped and re-started, a new map component is started (Figure 8.18b),
however significant scale drift accumulates during rapid cornering. When the new path returns to a previously
visited location, loop closure is detected and the maps are fused. The scale from the first component is
propagated along the new path, however a loop closure opportunity was missed when the camera travels in
the opposite direction to the previous visit, leading to large uncorrected scale drift, as seen on the right of
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(a) Ground-truth trajectory from the SLAMDUNK
dataset.

(b) Trajectory computed using every 10th frame,
motion blur added.

(c) Trajectory computed using every frame, motion
blur added.

(d) Trajectory computed using every frame, no mo-
tion blur.

Figure 8.15: Camera trajectory computed from the simulated SLAMDUNK dataset. No motion models are
assumed, and no optimisation is used. The repeated images of banana boxes make loop-closure detection
challenging, and occasionally trigger false loop-closure. Adding motion blur degrades positioning slightly, as
does using only every 10th frame.
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(a) Global map, no motion model. The path is gener-
ally reconstructed accurately, except at either end
of the second trajectory where loop closure events
are missed and scale drift accumulates.

(b) Motion model constraining allowed scale of the world.
Scale drift is greatly reduced, although the map is dis-
torted where the true scale of the environment does not
reflect the scale assumed by the motion model.

(c) Motion model constraining acceleration. Some scale drift
still occurs at either end of the second track.

(d) Ground truth data from GPS

Figure 8.16: Maps of robot poses compared with ground truth from GPS, from the Suburban dataset
(Figure 8.17). The path starts at S and traverses the large loop twice, with various diversions. After 16
minutes the camera is stopped, then restarted at R. Later the original path is re-joined.
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Figure 8.17: Frames from the Suburban dataset, covering 2.5km over 25 minutes. Dozens of pedestrians and
cars pass by, and one sequence of three frames is completely obliterated by a passing bus.
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Figure 8.18: The robot needs to identify which frames have reliable position estimates as it explores. To do
this it maintains maps where each frame is positioned along the ‘shortest’ path back to a root node (the first
node in this example). These maps are locally consistent (near the root) but contain significant scale drift
and gaps in loops; these are corrected when a globally accurate map is optimised using TORO.

Figure 8.18c. This loop is hard to detect as features common to both frames are visible from very different
angles (possible solutions are discussed later, and the frames concerned are shown in Figure 9.12). Even
viewpoint-invariant SURF descriptors are not sufficient to detect this loop closure.

Initially a framerate of 16Hz is maintained; after 24 minutes this has dropped to 11Hz; still almost four times
the rate images were captured. Correcting scale drift in 1546 edges, around 7 cycles, by SVD takes just 60
milliseconds.

To produce the optimal map in Figure 8.16 a 25-spanner of the pose graph is found. This contains 14 more
edges than the shortest path tree used to find locally consistent maps (Figure 8.18). A reasonable map
with only small gaps is obtained after 500 iterations (6 seconds). After 20,000 iterations (234 seconds) the
global error is reduced four-fold and gaps are completely closed. This slow convergence is due to variation
in relative position variances; by setting all variances equal a reasonable map is obtained in 50 iterations.
While most details of the ground-truth track from GPS are recreated, in two places (at either end of the
second track) uncorrected scale drift corrupts the position estimate.

We have also processed this dataset with the two motion models proposed in Section 8.3.3. The first of these
motion models, constraining accelerations, reduces scale drift throughout the map (Figure 8.16(c)), however
some scale drift still distorts the map during tight, rapid cornering. The constraint on acceleration does not
affect BoWSLAM’s ability to stop or start moving at the three locations where the camera is stationary.

The second motion model, constraining the depths of reconstructed points, greatly reduces scale drift and
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Table 8.2: RMS errors in global maps optimised by TORO. Errors are relative to GPS positions after scaling
and aligning maps; RMS errors in the non-differential GPS position are estimated to be 5m. These figures
are parametrisation-dependent and mainly reflect the amount of scale drift present. The total track length
is 2.5km.

Motion model RMS error Error relative to distance travelled
No motion model 198m 7.9%
Constrained acceleration 83m 3.3%
Constrained depths 56m 2.2%

Figure 8.19: Frames from the University of Alberta CS Centre dataset—a 512 frames captured around a
75m indoor loop from The Robotics Data Set Repository (Radish) (2003).

all features of the original map are accurately reconstructed, however some distortions are introduced where
the camera passes through a narrow passage where the point depth model does not reflect the true point
depths (Figure 8.16(b)). The RMS errors between these three runs and the GPS ground-truth are given in
Table 8.2, showing that both motion models improve BoWSLAM’s accuracy.

The second dataset demonstrates BoWSLAM navigating a typical indoor environment. The dataset, from
the University of Alberta (The Robotics Data Set Repository (Radish), 2003), consists of a 75m rectangular
loop around corridors and landings. 640× 480 greyscale images were captured every 15cm from a wheeled
robot (Figure 8.19). Images are processed at 16Hz, corresponding to a robot velocity of 2.4m/s. Positioning
is accurate along straight corridors, despite a large number of self-similar features, and features reflected
from the uneven floor. Again when cornering rapidly the rapid rotation relative to forward motion make
tracking scale difficult, as few points with accurate 3D positions are tracked into subsequent frames (using
a wide-angle lens would greatly reduce this problem). Positions of a few frames with gross errors are visible
near corners; these errors are successfully avoided when computing subsequent positions.

When the start point is revisited loop closure is detected (Figure 8.20). Optimisation with the TORO
framework produces the map shown in Figure 8.21, needing 50 iterations and 0.08 seconds. Artefacts from
the errors during rapid cornering are still visible, in particular the zig-zagging where a sequence of alternate
frames is positioned relative to two different earlier frames.

The final dataset demonstrates BoWSLAM navigating a challenging outdoor dataset. The dataset is captured
from a Contour HD mountain bike helmet camera, and features full six degree-of-freedom motion, large
changes in scale, rapid cornering, erratic motion over rough ground, and sequences of frames with motion
blur (Figure 8.22). 1.5km are covered in 5 minutes at speeds ranging from 5 to 30 km/h. The original
video consists of frames sized 1280× 720 captured at 30Hz; image features accelerate from zero to 140 pixels-
per-frame across sequences of three frames, and sequences of up to six consecutive frames contain motion
blur.

BoWSLAM uses one-in-three frames from the original video, downsampled to 640 × 360. A motion model
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Figure 8.20: Local maps of robot poses before pose graph optimisation, University of Alberta dataset (Fig-
ure 8.19).

constraining the world’s scale, and scale- and rotation-invariant SURF descriptors are used; these are nec-
essary to register poor-quality images despite rapid changes in scale, but cut performance to around two
frames-per-second.

BoWSLAM successfully recreates the double-loop and many features of the trajectory despite numerous
small errors (Figure 8.23). Overall the map is warped from many small errors in relative orientation, and
errors in scale when the camera moves between forest and open areas. Corrections around loops mean
changes in altitude are recreated successfully, despite the warped map (Figure 8.24).

8.5.1 Long-term real-time operation

Real-time operation refers to the capability to operate as fast as the robot moves (as explained in Section 4.2).
Real-time operation is necessary so that robots can use the position estimate from SLAM with low latency.
Datasets are processed offline, but are processed incrementally at speeds well in excess of the speeds at which
they were captured (for example an image sequence captured at 2.5Hz is processed at 16Hz; Section 8.5).
Like all other global SLAM algorithms, the non-constant complexity in the size of the mapped environment
will eventually limit real-time operation, however BoWSLAM operates in real-time on datasets captured in
large environments, including on a 2.5km outdoor track (Section 8.5).

A breakdown of typical processing times is given in Figure 8.25. Note that once the inlier correspondences
and epipolar geometry are determined, the positioning and mapping parts of the algorithm are very fast.
Also computing four position hypotheses per frame rather than one only increases the total cost by about
50%. For this dataset, using RANSAC instead of BaySAC almost doubles the time needed to find essential
matrices (increasing the total time by 20%), although this is parametrisation-dependent.

For the first few thousand frames the execution time is dominated by constant-time operations: extracting
features from each frame and computing positions relative to around four nearby frames. However, the
following parts of BoWSLAM currently have higher complexity in the number of frames T , and will eventually
become the most expensive operations:

• Loop closure takes time up to O(T logT ) (Section 8.3.3)
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Figure 8.21: Global map of robot poses compared with ground-truth, University of Alberta dataset (Fig-
ure 8.19), after optimisation with TORO framework. A scale is applied to the optimised map to match
ground-truth scale.

Figure 8.22: Frames from the Helmet Camera dataset, a challenging sequence characterised by erratic motion
and motion blur.

(a) BoWSLAM’s optimised map of the Helmet
Camera dataset.

(b) Ground-truth data from GPS.

Figure 8.23: Optimised map of the Helmet Camera dataset. BoWSLAM successfully re-creates the structure
of the trajectory, although errors accumulate around tight corners and distort the optimised map.
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Figure 8.24: Camera altitude on the Helmet Camera dataset from GPS, from Google Earth’s Digital Elevation
Model (DEM), and from BoWSLAM (shifted and scaled to match the range of the DEM data). BoWSLAM’s
altitude estimate contains systematic errors from a slightly warped map, however details are recreated more
successfully than by GPS (where the same location has a 30m height difference on two visits).
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Figure 8.25: Breakdown of execution time per frame. Computed on University of Alberta dataset, excludes
rendering of maps and TORO optimisation.
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• Finding BoW matches takes time O(T ) (comparison with every other frame)

• Building a new BoW dictionary (clustering) takes time O(T logT ), although per-frame this is only
O(log T )

• Finding a t-spanner for optimisation by TORO takes time O(T logT ), and TORO takes time Ω(T ),
although this is performed only occasionally when a globally-accurate map is needed.

For long-term operation, constant time costs are necessary, however in a bounded environment a robot will
eventually map everywhere it ventures, reducing the SLAM problem to a much simpler localisation problem.
In the mean time the costs listed here could still be reduced further: the complexity of BoW matching can
reduced to O(log T )) by clustering the BoW image representations and only searching in nearby clusters
(Fraundorfer et al., 2007), and BoW clustering can be avoided entirely once a dictionary appropriate for the
environment is found. Alternatively, for some environments, a dictionary built offline from training data
could be used (as used by Cummins and Newman, 2008a; Konolige et al., 2009), which would avoid the need
to retrain while exploring entirely.

Memory usage is linear in the number of frames and is dominated by storing descriptors, requiring around
40KB per frame. This gives about 25,000 frames/two hours of operation per GB of memory. This could
be reduced greatly if correspondences directly from the BoW representation were used, as proposed in
Section 5.6; this would remove the need to store descriptors once a BoW dictionary representative of all the
environments that might be encountered was found.

8.5.2 Discussion

BoWSLAM can navigate in three dimensions with very few assumptions about motion, however a motion
model helps to reduce scale drift. Ideally rotation-invariant descriptors should be used, as some robots
(for example climbing robots) may visit the same location with a different orientation. Rotation-invariant
SURF descriptors perform as-well or better than patch descriptors, however they are too costly to extract
in real-time.

We attempted to parametrise MonoSLAM (Davison, 2003) to work on the University of Alberta dataset,
however features near to the camera move too far between frames to be tracked (or when allowed motion
is increased the tracking jumps between nearby similar-looking features). When a corner is reached, rapid
feature motion causes tracking to fail, and the estimated path continues straight ahead due to the constant
velocity motion model. These difficulties are largely related to the data used however; other single camera
SLAM schemes generally require considerably higher framerates.

Like all SLAM schemes with global loop closure detection, there is a risk that BoWSLAM may close loops
incorrectly in self-similar environments, corrupting part of the map, however this is only a problem if the
geometry of the scenes is also compatible. So far the only incorrect loop closures observed have been in
simulated data where the same image is observed in different locations. Other schemes (Cummins and
Newman, 2009; Konolige et al., 2009) have also found geometric constraints sufficient to prevent false loop
closure. If incorrect loop closure did occur, the incorrect link would be incorporated into the t-spanner,
corrupting the optimised map, however by actively detecting these incorrect loop closure events, the damage
could be undone simply by deleting the incorrect link.

In Chapter 1, it was proposed that a single camera SLAM scheme should be capable of operating indefinitely
in a bounded environment, i.e. that the complexity should grow only with the area explored. BoWSLAM
does not yet achieve this aim, as new relative position estimates are added as previously-explored areas are
traversed, however by dropping frames which are in the approximately the same place as previous frames,
the cost does grow more slowly. In addition, the number of non-leaf edges in the t-spanners which are
optimised only grows when new areas are visited, or loops are closed. In future we plan to build a t-spanner
incrementally, allowing a global map to be generated online. The cost of this optimisation would only grow
when new areas are explored, or where new loops are closed.
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Figure 8.26: Environments where positioning is challenging include locations where few point-features are
tracked between frames, particularly in locations such as doorways. Possible solutions to this problem include
higher-level features (line features, or even the concept of a doorway), or omnidirectional images.

Cameras used to capture image sequences used in this chapter were calibrated using the MATLAB camera
calibration toolbox (Bouguet, 2010), which uses the calibration-pattern-based method of Zhang (1999). For
the low-cost wide-angle Contour HD helmet camera, uncertainty in radial distortion coefficients equivalent
to a localisation error standard deviation of 0.015 radians at the image edge, or six pixels, are observed, even
though a fourth-order correction model is used. This demonstrates one of the difficulties of implementing
SLAM on low-cost platforms. Errors are substantially lower towards the centre however. For the Canon
400D SLR camera however, a second-order correction with errors of 0.001 radians (less than a pixel at worst),
is found.

Points at infinity are used for relative pose estimation, but not for relative scale estimation. These points arise
when distant points are viewed, and have localisation errors large enough that their depth cannot accurately
be recovered. The threshold at which points are classified as being ‘at infinity’ appears to affect the level
of scale drift observed. Improving localisation errors (Chapter 4), and ensuring cameras are accurately
calibrated, could have a significant impact on scale drift observed.

8.5.3 Limitations of BoWSLAM

In this section I discuss the limitations of BoWSLAM, and describe how further development could pre-
vent these problems. While successful in a wide range of environments, there are still situations in which
BoWSLAM fails. When positioning fails, a new map component is usually started, and this may be fused
to the original map on loop closure, however multiple failures lead to multiple disconnected components.

One situations where positioning fails is when featureless walls are viewed when cornering rapidly. This
situation sometimes occurs when negotiating doorways and stairwells (Figure 8.26). In this case overlapping
regions of consecutive frames containing few reliable point features, and even fewer features are matched
across triples of frames. One way to resolve this limitations would be to incorporate topological constraints
into the map, for example identifying that locations are spatially nearby, but with unknown relative scale
or orientation, however loop closure would be necessary (and not always sufficient) to produce consistent
global maps, and loop closure is unlikely to occur if an environment is only accessible by the challenging
door or stairwell. An alternative way to resolve this situation would be to recognise the features of typical
buildings, so that the robot (or pedestrian navigation system) can infer its relative position from knowledge
that it has, for example, climbed stairs with two right-angle corners, or passed through a door (as proposed
by Flint et al., 2010).

The other situation when positioning fails is when a robot stops and rotates, then moves away. Tracking
scale is impossible in this situation, however orientation can be recovered accurately, so, as with the case of
a stationary camera, this could be handled as a special case, with only a topological constraint introduced
between poses. Scale can be resolved later by closing a loop, or by recognising an object of known size
(Chapter 9). Alternatively, both of these situations could be resolved by using omnidirectional images.
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8.6 Conclusions

This chapter describes BoWSLAM, a scheme combining techniques developed throughout this thesis in
order to enable real-time navigation of dynamic environments using a single camera alone. An accurate
map is generated after travelling 2.5km over 25 minutes; considerably further than the tracks over which
previous single camera SLAM schemes have been demonstrated (Section 8.2). BoWSLAM demonstrates
that autonomous mobile robots may be positioned for extended periods in large scale environments using
just a single camera.

Key to this performance is ensuring that positioning does not fail even in the most challenging situations.
Three innovations make this possible. Firstly, the BoW algorithm together with BaySAC, are used for fast,
wide-baseline feature matching. This enables positioning despite substantial camera movement, and outliers
from moving or repeated features, and is necessary when computing position estimates relative to more
distant frames. Secondly, the BoW algorithm is used to select good candidate frames from which to compute
positions, this allows positioning to continue despite sequences of frames being unusable, for example due
to moving objects. Thirdly, a graph-based representation of multiple position hypotheses allows subsets of
good position estimates to be found, despite the presence of gross outliers. Scale estimates are modeled as
a dual graph, which is optimised to correct scale drift when loops are closed.

8.7 Future development

We have demonstrated BoWSLAM’s robustness to gross errors and challenging environments, however there
are several areas where accuracy can be improved. Firstly, scale drift is still a large source of errors in maps,
particularly when navigating by dead-reckoning (far from previously-visited locations). One obvious solution
is to incorporate measurements from additional sensors; in particular the complementary measurements from
low-cost IMUs (like those found in many modern phones). An alternative solution however, which we explore
in the next chapter, is to extend the high-level representation of each frame by using the BoW database to
learn and recognise classes of objects. Measurements of the size of these objects can then be used to estimate
the true scale of the world.

We also plan to improve positioning accuracy by using a bundle adjustment-based approach (Triggs et al.,
1999; Mouragnon et al., 2009). Position estimates over good sequences of frames could be refined, and
information from multiple good tracks could be combined (Section 8.3.3), however a better approach may
be to focus on those regions with the highest uncertainty. Strasdat et al. (2010) observe comparable levels
of scale drift in relatively small and static loops, despite the use of incremental bundle adjustment to refine
the map, indicating that the simple two-view relative pose computation is not necessarily the factor limiting
BoWSLAM’s accuracy.

A more profitable way to improve the accuracy of global maps may be to improve BoWSLAM’s optimisation
of scale drift. BoWSLAM currently uses the 3D version of TORO, by Grisetti et al. (2007a), to generates
global maps offline, taking typically a few seconds. These maps are only approximations to the true ML
maps however, and currently scale drift within cycles is not optimised. Ideally an accurate global map
would be available online, and this map would be more accurate if errors in scale were incorporated (as
shown by Strasdat et al., 2010). Following the recent trend away from global Euclidean coordinate frames, a
new pose graph optimisation scheme, HOG-Man (also by Grisetti et al., 2010) has recently been developed,
featuring online optimisation of pose graphs, where each pose is optimised in its own local coordinate frame.
In addition, a hierarchy of subgraphs (similar to the hierarchy of graphs used by Frese et al., 2005, in
multi-level relaxation), allows optimisations to be performed online, with only poses which will be adjusted
significantly on each update being updated. Substantially more accurate maps than those generated using
TORO are presented. We plan to investigate the modification of HOG-Man to incorporate the distribution of
changes in scale between poses. One approach would be to alternately optimise scale estimates and relative
positions, however it may be possible to incorporate relative scale estimates into the transformations between
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poses. A scheme to incrementally estimate the outlier-free pose graph to be optimised would then enable
online real-time global mapping.
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Chapter 9

SCORE2: Scale Correction by Object

Recognition

Abstract

This chapter proposes a novel solution to the problem of scale drift in single camera SLAM,
based on recognising and measuring objects. When reconstructing the trajectory of a camera
moving in an unknown environment the scale of the environment, and equivalently the speed of
the camera, is obtained by accumulating relative scale estimates over sequences of frames. This
leads to scale drift: errors in scale accumulate over time. The proposed solution is to correct
the scale estimate by recognising objects of known size. A Bag-of-Words-based scheme to learn
object classes, to recognise object instances, and to use these observations to correct scale drift
is described, and is demonstrated reducing accumulated errors by 64% while navigating a large
outdoor environment.

9.1 Introduction

This thesis describes the development of BoWSLAM, a scheme allowing a mobile robot to position itself in
an a priori unknown environment, using only a single camera. BoWSLAM builds a map of the environment
as it is explored. The map is optimised to correct some of the errors that accumulate, enabling long-term
positioning, and as long as the trajectory regularly re-visits previously mapped areas, accurate maps can be
generated. Not all errors can be corrected however, in particular errors which accumulate within large loops,
and in tracks without loop closure. These errors can severely distort global maps, so should be minimised
to ensure position estimates are still useful.

A significant source of error unique to single camera SLAM is scale drift. A robot with a single camera can
resolve the scale of the world, and hence its speed, by identifying objects of known size, such as the calibration
objects used to initialise some single camera SLAM schemes (Davison, 2003; Eade and Drummond, 2006),
or previously mapped landmarks. As the robot explores away from previously mapped areas, small errors in
the robot’s scale estimate accumulate, eventually rendering position estimates useless. Even when a loop is
closed, substantial uncorrected errors in scale can remain, due to the trade-off between adjusting rotations,
translations, and scales in order to reduce some global error function, therefore it is always worthwhile to
minimise this scale drift where possible.

In an earlier paper (Botterill et al., 2009a), we described a new algorithm, SCORE (Scale Correction by
Object Recognition), that exploited a novel solution to this problem. SCORE attempts to reduce scale
drift by firstly identifying object classes from the robot’s internal SLAM map, secondly by measuring the
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distribution of size within classes, and thirdly by using measurements of these objects at later times to
improve the robot’s scale and speed estimates. Results were mixed; while object classes and size distributions
were learned and measured in a variety of environments, the speed updates provided by later measurements of
these objects only reduced scale drift significantly in one indoor dataset containing many repetitive structures.
The reason for this failure was partly the simple model of scale used in the early version of BoWSLAM,
and partly that SCORE approximated object class size distributions with a normal distribution, which
was often a poor approximation. Since then, BoWSLAM has been improved in many ways, in particular
by modeling scale estimates as lognormally-distributed random variables. Correspondingly, the SCORE2
algorithm developed in this chapter has been improved in many respects, in particular the model for object
class size distributions is now lognormal, this proves to be a considerably better model than the normal
distribution and allows scale estimates to be integrated efficiently with the SLAM map. In this chapter,
SCORE2 is demonstrated on indoor and outdoor datasets: in a large outdoor environment, errors in the
optimised map are reduced by 64%, and in one indoor dataset, scale drift is reduced by 75%.

In some situations, scale drift can be eliminated by other means, in particular by using measurements from
other sensors, or by making assumptions about properties of the environment or of the robot’s motion.
Measurements from other sensors, including IMUs, wheel encoders or additional cameras, provide comple-
mentary measurements which can be used to estimate the true scale of the world at any time (Hide et al.,
2010). Alternatively, as described in the previous chapter, an assumption that reconstructed 3D points in
the world have depths from a particular distribution allows scale drift to be eliminated. That assumption
improves the accuracy of maps, despite distortions where it does not hold. For a single camera attached to
a wheeled vehicle, such as a car or bicycle, the distance of the camera above the ground plane is approxi-
mately constant, so the scale of the world can easily be identified by identifying points on the ground plane
(Scaramuzza et al., 2009). Such assumptions are not always true however, and alternative sensors are not
always available. SCORE2 demonstrates that these assumptions, or additional sensors, are not necessary to
correct scale drift.

SCORE2 is not only useful for scale drift correction: the object recognition (OR) component of SCORE2
could also be applied to other robot tasks, such as robust loop closure (Section 9.6), and task execution
(Jensfelt et al., 2005), and the capability to estimate the sizes of objects seen in only a single image (or from
a distance) could potentially be used to aid path planning. SCORE2 also provides a mechanism for additional
measurements of scale from other sensors to be incorporated into BoWSLAM, or for measurements from
these sensors to be validated, in order to remove gross errors.

A related problem to estimating a camera’s speed from object observations is the problem of reconstructing a
scene observed with a fixed camera by making observations of moving objects. Jacobs et al. (2010) reconstruct
a depth map for a scene imaged with a fixed camera by tracking the shadows of clouds moving across it.
The true motion of a point on the edge of a shadow is assumed to match the wind speed, allowing the depth
of the point to be inferred.

The following section describes the OR and machine learning techniques that SCORE2 is based on, and
previous use of OR by mobile robots. Section 9.3 analyses the problem in detail, and describes the SCORE2
algorithm. Section 9.4 demonstrates SCORE2 successfully reducing scale drift in single camera SLAM, and
the final sections discuss our conclusions, and SCORE2’s possible application to other navigation problems.

9.2 Background

This section describes previous use of OR by mobile robots, and the OR schemes SCORE2 is based on. Note
that OR schemes either aim to recognise classes of objects (e.g. trees), or aim to identify particular objects
(e.g. the small plane tree outside our office). Both OR and object class recognition are discussed here.
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9.2.1 Real-time object recognition

For recognising objects from a small set of distinctive items, local area descriptors such as SIFT (Lowe, 1999)
or SURF (Bay et al., 2008), or descriptors of colour (Jensfelt et al., 2005) are commonly used. A descriptor
in an image which matches the descriptor of an object from the database indicates that the image contains
an object resembling the database object. OR schemes based on individual descriptors do not scale to large
object databases however, as individual descriptors are not sufficiently distinctive. Instead, combinations of
descriptors are used, and the most popular model to represent these descriptors is the BoW model. The
BoW model, described in detail in Section 5.3, describes an image by mapping each descriptor to its closest
match from a ‘dictionary’ of ‘image words’; a discrete set of representative features. Testing whether an
image contains a particular set of image words associated with an object is very fast, allowing large image
databases to be searched for large numbers of objects. The BoW model also enables the distinctiveness
of each word to be estimated, normally using the TF-IDF score (Section 5.3). A distinctive (rare) feature
associated with an object class is more useful for OR than a common feature which occurs in many different
contexts.

The BoW image representation also facilitates the automated learning of object classes or categories. Classes
are often defined by a weighted set of image words that tend to co-occur, and hence are assumed to arise as
a result of an object in that class being visible. An image containing many of the words defining an object
class, particularly those that are most distinctive, is likely to show an instance of an object from that object
class.

Object classes can be learned automatically from the BoW representations of images of these objects. One
popular algorithm for automatically identifying object classes is Latent Semantic Analysis (LSA; Dvorsky
et al., 2003, popular variants include Probabilistic Latent Semantic Analysis, Sivic et al. (2005); and Latent
Dirichlet Analysis, Li and Perona (2005)). In LSA, a sparse matrix is constructed where rows represent
images, columns represent image words, and elements are the occurrence counts of each word in each image.
Each occurrence count is weighted by the word’s distinctiveness (TF-IDF score). The principal components
of the matrix are then found by SVD. These principal components represent sets of co-occurring features that
partition images into those containing particular classes of objects; the three strongest components might
characterise for example ‘cars’, ‘trees’ and ‘bikes’, depending on the contents of the training images. LSA
is an unsupervised learning algorithm. The principal components will identify sets of features, the presence
or absence of which will which partition the training images. No a priori knowledge of the contents of the
training images is required (when training data is already categorised, e.g. into ‘cars’ and ‘trees’, then a
Support Vector Machine, or similar algorithm can be used; Section 5.3.2).

BoW-based OR is particularly suited for autonomous mobile robots as many SLAM schemes already maintain
BoW databases in order to detect global loop closure (Eade and Drummond, 2008; Newman et al., 2009;
Konolige et al., 2009; Sibley et al., 2010), and because BoW schemes are capable of real-time recognition
(Sivic and Zisserman, 2003; Nistér and Stewénius, 2006; Cummins and Newman, 2008a), and occasionally
real-time training (Section 5.4, and Angeli et al., 2008a; Eade and Drummond, 2008).

Many other schemes for OR have been demonstrated, for example by matching the 3D structure of objects
(Brown and Lowe, 2005), by texture analysis (Serre et al., 2007), or with hybrid approaches (Rothganger
et al., 2006). These approaches are often highly accurate but are rarely fast enough for real-time OR (taking
several minutes per object in these examples).

9.2.2 Object recognition by mobile robots

Several mobile robots have been equipped with OR capability, but to our knowledge, all recognise particular
object instances from a manually-trained database. OR is used to improve the performance of visual SLAM
by Ahn et al. (2006) and Castle et al. (2007). These schemes both manually construct databases of planar
objects (posters and photographs), then recognise these (using simple SIFT matching) and use them as
robust landmarks for stereo EKF-SLAM, and MonoSLAM respectively. Castle et al. extended their scheme
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(a) A robot observes objects as it explores. Later, sub-
stantial scale drift accumulates. A subsequent object
observation is perceived to have a different size (high-
lighted).

(b) The assumption that the size of the observed objects
come from the same distribution allows scale drift in
the highlighted edges to be corrected.

Figure 9.1: Figure showing how SCORE2 corrects scale drift. (a) As the robot explores it observes and
measures objects. Later, scale drift degrades its position estimate. (b) A subsequent observation of the
object allows scale drift to be corrected.

to incorporate the known size of particular objects into the SLAM solution (Castle et al., 2009), however the
major limitation of these schemes is that they are only beneficial in environment containing these objects,
making the schemes of limited use for exploring unknown environments.

Another application for OR by mobile robots is for task execution. Ramisa et al. (2008) use a BoW model
to recognise instances of various household objects while a robot explores. A similar scheme by Jensfelt
et al. (2005) recognises a pre-defined set of objects, and adds their positions to the SLAM map. Objects in
training images are characterised by the set of colours they contain, then as the robot explores, occurances
of the same sets of colours are found in captured images. The robot can later be commanded to fetch one of
the objects it has identified.

These schemes demonstrate some uses of OR for mobile robots, however all are limited to recognising a small
number of objects from a pre-defined database, so are only useful when the environment is likely to contain
those particular objects. To overcome this limitation, SCORE2 is designed to learn to recognise the object
classes which are encountered as the robot explores, so that no prior training data, or prior knowledge about
the environment is needed.

9.3 Scale Correction by Object Recognition

This section describes SCORE2, our new scheme to learn classes of objects, to measure instances of these
objects, to estimate the distribution of sizes of each class of objects, and to use later object size measurements
to correct accumulated errors in scale. This section is organised as follows: firstly, Section 9.3.1 analyses
of the problem of correcting scale drift from object observations. Secondly, Section 9.3.2 gives an overview
of the proposed solution. Thirdly, Section 9.3.3 describes how objects are measured and how object classes
are learnt. Fourthly, Section 9.3.4 describes how these uncertain object size measurements are used to
parameterise a size distribution for each class. Finally, Section 9.3.5 describes how measurements of objects
from these distributions are used to correct accumulated errors in scale.
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Figure 9.2: An object observed at times t = i and t = j is measured by reconstructing features on it, then
measuring the distances between these features. The size of this measurement is proportional to the baseline
length, sij . As baseline length estimates are correlated, different object measurements are also correlated.

9.3.1 Analysis of scale correction problem

A robot identifies classes of objects as it explores an unknown environment. The distribution of sizes in
each class is measured. As the robot travels into a previously unmapped area, its estimate of scale drifts,
and as a result its position and speed estimates deteriorate. When the robot observes and measures objects
belonging to classes observed earlier, it can use these measurements to improve its scale estimate. This idea
is illustrated in Figure 9.1.

An object is measured by reconstructing features on the object which are viewed from two frames, then
measuring the distance between the features. The major source of errors in an object measurement is
usually the error in the estimated baseline between the pair of frames (which is equivalent to the estimated
speed of the robot). This source of error applies equally to all objects measured in the same two frames. In
addition, as scales are accumulated sequentially, errors in an estimated scale are correlated with errors in
other scale estimates from which this scale was calculated (or will be used to calculate), and hence errors in
all object measurements made along a trajectory are correlated (Figure 9.2).

As with the SLAM problem (Chapter 3), where correlations between landmark positions and the robot pose
should be modelled (Smith et al., 1990; Durrant-Whyte and Bailey, 2006), modeling the correlations would
be useful for estimating object class size distributions. Maintaining these correlations would be challenging
however. Unlike SLAM measurements, which can be partitioned into local submaps, the most suitable object
classes for scale drift reduction are likely to be encountered throughout the robot’s environment. Currently
measurements are assumed independent, to simplify the problem. This approximation is most appropriate
when scale drift is low, which is when the most reliable measurements of objects (those contributing most
to their estimated size distribution) are made.

9.3.2 Overview of solution

The SCORE2 (Scale by Object Recognition) algorithm is outlined in Figure 9.3, and is detailed in the
following sections. In summary, when retraining occurs (when a new BoW dictionary is created), a set of
object classes is identified. The measured sizes of objects in these classes are used to improve existing and
new scale estimates.

SCORE2 is designed to integrate with BoWSLAM, the single camera SLAM scheme described in this thesis.
BoWSLAM represents every frame as a ‘Bag-of-Words’ (BoW), using the scheme described in Chapter 5.
This high-level representation is used for active loop closure detection, fast feature matching, and to select
the sequence of frames used to position each new frame relative to. The representation is also ideal for OR.
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For each frame:

When re-training:

1. Identify (learn) the B object classes

2. Measure each object (subject to scale estimate from SLAM)

3. Estimate distribution parameters

4. For each edge combine the most likely scale given the observations with the measured scale

When a new edge (relative pose estimate) is added:

1. Observe any objects reconstructed here

2. Update object size distributions

3. Combine the scale estimated from the observations with the measured scale

Figure 9.3: Overview of the SCORE2 algorithm

Although SCORE2 is designed to integrate with BoWSLAM, it could easily be adapted to other single camera
SLAM schemes which index a subset of frames into a BoW database (for example Eade and Drummond,
2008).

The effect of SCORE2 is to propagate reliable scale estimates from better mapped areas to areas where
the scale is much less certain, but where the same kinds of objects are visible. In practice there is often a
large difference between the uncertainty in scale estimates in different areas, for example scale estimates are
accurate when the robot is moving is a straight line in a feature-rich environment, then deteriorate when
the robot corners. SCORE2 is also able to initialise a scale estimate when a new map component is started,
after the robot has become lost.

9.3.3 Classes of measurable objects

This section describes how SCORE2 defines a class of objects, and how objects in that class are measured.
Notation used is summarised in Table 9.1.

SCORE2 requires that object classes can be learnt and identified in real-time, and that identified objects
can be measured. The object classes recognised in real-time by contemporary OR schemes (Section 9.2.1)
consist of occurrences of one or more of a set of features defining that class. The most obvious measure of
an object in one of these classes is the distance between two features on the object. Measurements of more
than two features are not considered, as this would add to the complexity (there are

(

n
2

)

possible measurable
distances between n points), and would introduce difficulties in coping with partially-observed and partially-
reconstructed objects. As a result, SCORE2’s object classes are each defined by the co-occurrence of two
image words. Multiple instances of the same object are likely to be visible in many scenes; however by
assuming objects are separated by more than the separation of the features within them, only the least
separation between all possible pairs of two features visible in a scene must be measured.

To identify co-occurring image words, the same term-document matrix as LSA is used. This sparse matrix,
M , has elements mij representing the number of times word j occurred in image i, multiplied by word j’s
TF-IDF score. Each row of this matrix, ri, is the BoW representation of image i.

LSA finds co-occurring features by computing the principle components of the matrix M by SVD. M could
realistically have 10,000 rows, 50,000 columns, and 5 million non-zero entries however, making the compu-
tation challenging for a real-time application. In addition, only co-occurring pairs of features are of interest,
rather than co-occurring sets of features.
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Table 9.1: Selected notation used in this chapter.

B Number of objects
w1, w2 Two co-occurring words defining an object class
M Term-document matrix, with elements mij

mij The number of times word j occurred in image i, weighted by TF-IDF
λb Measurement of object b (distance between features defining b),

assuming baseline 1
γb Underlying measurement of object b if scale was known
rb, sb Scaled and logged measurement of a measurement, with variance from

uncertainty in scale
µb, σb Parameters of the lognormal distn. of sizes of objects in class b
Mb = {(rbi, sbi), i = 1, ..., N} N measurements of object B
DSLAM , G2

SLAM Parameters of a scale estimate from SLAM; s ∼ Log-N (DSLAM , G2
SLAM )

DOR, G
2
OR Parameters of a scale estimate from SCORE2; s ∼ Log-N (DOR, G

2
OR)

Dcombined, G
2
combined Parameters of combined scale estimate; s ∼ Log-N (Dcombined, G

2
combined)

Mi, 1/t
2
i Parameters of conjugate distn. for µ; µ ∼ N(Mi, 1/t

2
i ) after i observations

αi, βi Parameters of conjugate distn. for τ = 1/σ2
b ; τ ∼ Γ(αi, βi) after i

observations

The principle component p of M is a unit vector maximising ‖M ′p‖, where M ′ is given by subtracting the
column’s mean from each column of M . As co-occurring pairs of features are required, vectors p2 with two
equal nonzero elements are found, which each corresponds to one co-occurrence. For each co-occurrence of
two words w1 and w2, we calculate the sum:

∑

Images i containing w1,w2

m2
i w1 +m2

i w2 (9.3.1)

If co-occurring words only occurred in these pairs, then the pair of words maximising ‖M ′p2‖ would be
the pair of words for which this sum is greatest. The B pairs of words with the highest value for this
expression are chosen as our B object classes. Only features that are successfully reconstructed are counted,
which limits the number of co-occurrences that must be considered, and avoids learning object classes which
cannot often be measured.

Equation 9.3.1 is a heuristic, as is LSA itself, however the experiments in Section 9.4 show it to work
reasonably well at identifying pairs of features on objects which tend to co-occur. Many alternative schemes
for choosing the word pairs could be used, for example choosing the pairs of features with the highest mutual
information. The mutual information of two words is a measure of the amount of information provided about
the occurrence or non-occurrence of one word, given that the other has been observed, and the co-occurrences
with the highest mutual information are selected by Cummins and Newman (2008b) in order to build a Chow
Liu tree (Section 5.3). Computing mutual information in this scheme requires heuristic estimates of word
co-occurrence probability however.

Once this set of object classes has been identified, the instances of the objects are identified (by searching
each of the sets of 3D points reconstructed between pairs of frames) and measured.

9.3.4 Estimating object class size distribution parameters

This section describes how a distribution is fitted to the noisy measurements of object sizes, as described in
the previous section. These measurements incorporates both measurement error, and variability in object
sizes within each class. There are five sources of variability in the observed object sizes:
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(a) The lognormal distribution is a good model for
size measurements of Object 0.
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(b) The lognormal distribution is a good model for
size measurements of Object 1.

0 5 10 15 20 25
Size quantiles

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
l 
th

e
o
re

ti
c
a
l 
q
u
a
n
ti

le
s

Q-Q plot of measurements for Object 0

Size measurements

Best fit line

(c) The normal distribution is not as good a model
as the lognormal distribution for size measure-
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(d) The normal distribution is a poor model for size
measurements of Object 1.

Figure 9.4: Q-Q plots (Thode, 2002) of distributions of object size measurements for the first two objects
identified in an outdoor dataset, which indicate that the lognormal distribution is a good model.

1. Uncertainty in the baseline length (scale) from which objects are reconstructed.

2. Variation in true size of objects (e.g. cars are 1.5 to 2.5m high).

3. The same two-word combination occurring in multiple contexts.

4. Errors in reconstructing 3D point positions.

5. Errors from measurements of multiple partially-visible objects, or features occurring in multiple objects.

The combination of these sources of variability is assumed lognormal, as this fits observations well. Fig-
ure 9.4 shows that the first two object classes identified in one outdoor dataset have measurements which are
considerably better approximated by a lognormal distribution than a normal distribution. The lognormal
assumption makes integration with the lognormally-distributed scales estimated by BoWSLAM simple, and
is underpinned by evidence that the lognormal distribution is very often a good model for size measure-
ments including the heights of plants or people, or the length of words (Limpert et al., 2001). Object size
measurements are also assumed to be independent.

An object b is observed in two frames, and is measured to have length λb when points are reconstructed
with baseline 1. If the baseline length was known, then the object would be measured to have size γb, drawn
from the underlying object class size distribution Log-N (µb, σ

2
b ), which includes variation in object sizes,

and measurement error.
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(a) Distances measured of two objects, ‘round shad-
ows’, and ‘car wheels’.

(b) Distributions of the sizes of these objects (15 and
19 measurements are made respectively).

Figure 9.5: Two object classes measured in an outdoor dataset have significantly different size distributions.
The lognormal distribution is a good model, as it is unimodal, heavy-tailed, and non-negative.

From SLAM, the baseline length is estimated to be lognormally distributed with parameters DSLAM and
G2

SLAM , therefore λb is lognormally distributed about γb, and the logged object size measurement rb =
log(λb) +DSLAM is normally distributed about log γb with variance s2b = G2

SLAM .

The joint likelihood of the object class size distribution parameters, µb, σ
2
b , given the observation rb, sb, is

therefore:

L(µb, σ
2
b ; rb, sb) =

1
√

2πσ2
b

exp(−1

2

(rb − µb)
2

σ2
b + s2b

). (9.3.2)

We make N observations of each object, Mb = {(rbi, s2bi), i = 1, ..., N}. Note that the only assumption
regarding the measurements mbi is that they are drawn from the same distribution, unlike measurements in
SLAM which should be distributed about their actual values.

For each object class, b, the parameters µb and σ2
b of the underlying distribution of sizes within the class are

now estimated from these N object measurements.

As the measurements are assumed independent, the likelihood of any particular parameters, µb and σ2
b , is

given by the product of the p.d.f.s:

L(µb, σ
2
b ;Mb) ∝

N
∏

i=1

1

σ2
b + s2bi

exp(−1

2

(rbi − µb)
2

σ2
b + s2bi

) (9.3.3)

The log of this likelihood function is twice differentiable, so a maximum can be found by Newton’s method.
The function often has local maxima where µb = rbi, σ

2
b = 0 for some i however. While a MLE for µb, σb

with σb > 0 can usually be found, it appears an MLE is not appropriate in this situation.

Instead, a Bayesian approach is used to estimate µ and σ2 = 1
τ (dropping subscript bs for clarity). Appro-

priate conjugate prior distributions for each parameter are the normal distribution for µ and the gamma
distribution for τ (Weerahandi, 1995). When N measurements have been made:

µ ∼ N(MN , 1/t2N) (9.3.4)

τ ∼ Γ(αN , βN ) (9.3.5)
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Figure 9.6: Objects from the same class observed on several similar-looking doors, University of Alberta
dataset. (Each object is measured in one place per pair of frames, however in BoWSLAM each frame is
registered to many others, so the same type of object may be measured in several places in the same frame.)

where parameters are given by:

Mi =
ti−1Mi−1 +

ri
s2
i

ti +
1
s2
i

(9.3.6)

ti = ti−1 +
1

s2i
(9.3.7)

αi = αi−1 +
1

2
(9.3.8)

βi = βi−1 +
1

2
(MN − ri)

2 (9.3.9)

Initially, uninformative parameters M0 = 0, t0 = ǫ, α0 = 1, β0 = ǫ, for some small ǫ > 0, are used. Af-
ter N observations, the parameters for the distribution of object sizes are taken to be the mean of these
distributions:

µ = MN (9.3.10)

σ2 =
αN

βN
(9.3.11)

σ2 is initially very large, but typically after four or five observations is low enough that subsequent object
observations can substantially affect scale estimates. By Equation 9.3.6, the most accurate measurements
(those where s2i is low) have the greatest effect on the estimated parameters.

9.3.5 Object observation and scale updates

When the BoW dictionary is re-created (Section 5.4), every scale estimate (between pairs of frames) is
updated with information from measurements of objects reconstructed between the two frames. The same
method is used to update new scale estimates as new edges are added.
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The relative pose of two cameras has a baseline length (scale) estimate modeled by a lognormal distribu-
tion with parameters DSLAM and G2

SLAM . A set of M objects, with size distributions parametrised by
{(µj , σj), j = 1, ...,M}, is observed in a frame, with logged measurements {logλj}. The scale of the edge
s ∼ Log-N (D,G2) satisfies sλj ∼ Log-N (µj , σj), so log s ∼ N(µj − logλj , σj). The MLE of the scale of
these object observations is given by differentiating the log of this likelihood function and setting equal to
zero:

DOR =

M
∑

j=1

µj − logλj

σ2
j

(9.3.12)

G2
OR =

1
∑M

j=1
1
σ2

j

(9.3.13)

Combining these parameters with the parameters from SLAM gives:

Dcombined =

(

DOR

G2
OR

+
DSLAM

G2
SLAM

)

/

(

1

G2
OR

+
1

G2
SLAM

)

(9.3.14)

where Dcombined is the scale estimate combining the scale estimate from SLAM, and the scale estimate from
observing the objects.

In summary, scale parameter estimates from SLAM alone are used to estimate the size distributions of
objects. These size distributions are used to compute the most likely scale parameters for each edge, given
the objects that have been observed. Observations of objects only substantially affect scale estimates when
scale estimates from SLAM have high uncertainty compared to the scale estimates when object sizes were
measured.

The computational cost of SCORE2 is dominated by identifying the B best object classes following retraining.
This takes time O(BT ), as a fixed number of feature co-occurrences occur in each image. When processing
the NZi3 dataset (described in Section 9.4), 4% of the total computational cost is related to SCORE2. As
BoWSLAM has O(T logT ) complexity per frame (Section 8.5.1), SCORE2 does not add significantly to the
total cost.

9.4 Results

This section describes results obtained from running BoWSLAM, with SCORE2, on outdoor and indoor
datasets. First, the 2.5km, 3662 frame, outdoor ‘Suburban’ dataset, described in Section 8.5, is used. About
2000 pairs of co-occurring features are identified and measured; of these, 455 have distributions with σb < 1
(higher values are too uncertain to have a significant effect on scale estimates). The 455 objects are each
measured between 5 and 31 times (typically one or two per frame are measured); the object with the tightest
distribution has σb = 0.47, whereas the least accurate scales from SLAM have distributions with G2

SLAM ≈ 1.
Examples of objects found in a similar outdoor environment are shown in Figure 9.5.

Without using SCORE2, RMS errors of 198m remain in BoWSLAM’s optimised map (Table 8.2). SCORE2
reduces the RMS errors to 71m; a 64% reduction in error. A model constraining the depths of reconstructed
points in the world (described in Section 8.3.3) reduces these errors to 56m (although significant variation
between different runs and parametrisations is observed).

Two indoor datasets are also used to evaluate SCORE2. The first dataset is captured at 2.8Hz with a Canon
400D SLR camera in the NZi3 office building at the University of Canterbury. Examples of frames from
this dataset, and objects detected, are shown in Figure 9.9. The dataset consists of a 20m straight line,
two sharp right-angle corners, then another 20m straight line. Scale drift often accumulates when cornering
rapidly, and is measured by comparing the estimated lengths of the two 20m sections: the longer length, as
a fraction of the shorter length, provides a measure of scale drift (Figure 9.7).
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Figure 9.7: Map of robot poses, NZi3 dataset. Significant scale drift accumulates when cornering rapidly.
Scale drift is measured as the ratio of the estimated lengths of two sections of the trajectory which have
equal length (marked ‘out’ and ‘back’).

On this dataset, SCORE2 is compared to BOWSLAM alone, and the two motion models proposed in
Section 8.3.3 (Figure 9.11). As levels of scale drift vary between runs (due to random BoW clustering), thirty
runs are made in each case. Figure 9.8 shows the distribution of scale drift observed for each motion model.
SCORE2 substantially outperforms a motion model constraining acceleration between frames (“Acceleration
MM”), and is close to matching the performance of the model constraining point depths (“Scale MM”).
SCORE2 reduces scale drift by an average of 75% when no motion model is used.

It is possible that the objects chosen by SCORE2 are irrelevant; i.e. constraining any measurements of
the world would be equally effective. To verify that this is not the case, SCORE2 is run where each
object measurement is replaced with a measurement of a random pair of reconstructed points. This scheme
(“Random measurements”) only reduces scale drift by a small amount; considerably less than the reduction
when using SCORE2. This verifies that SCORE2 works because object instances are being measured, rather
then simply that the scale of the world is contrained. Secondly, we verify that objects detected do have
significantly different size distributions. Figure 9.10 shows the distribution of the measured sized of the first
five object classes detected in the NZi3 dataset (out of 19 in total). Several object classes detected have
significantly different distributions of sizes.

A similar experiment is conducted with the University of Alberta dataset (described in Section 8.5). This
dataset is captured from a wheeled robot following a rectangular loop along corridors. Frames from this
dataset, and examples of objects detected, are shown in Figure 9.6. Again SCORE2 is compared to other mo-
tion models (Figure 9.8), and again, SCORE2 substantially reduces scale drift, and matches the performance
of a constraint on the depths of observed points. Frames are rearranged in the test dataset, so that loop
closure never occurs, however in the original dataset, loop closure substantially reduces scale drift, which
can be partially corrected around the loop.

9.5 Conclusions

This chapter has demonstrated a novel solution to the problem of scale drift in single camera SLAM. BoW
OR is used to learn object classes and to recognise objects. The distributions of object sizes in each class is
estimated, and this information is used to correct scale drift. Scale drift can be corrected over indefinitely
long tracks, and results in only a small increase in the computational cost.

SCORE2 reduces scale drift by 75% in one indoor dataset, and reduces the total accumulated error by 64%
in a large outdoor dataset. SCORE2 has similar performance to a heuristic model of the scale of the world
at reducing scale drift.
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Figure 9.8: Box plots showing the distribution of scale estimates from 30 runs for each model on each
dataset. The range, quantiles and median scale drift is shown. A score of 100% would indicate no scale
drift. SCORE2 greatly reduces scale drift in both the NZi3 dataset and the University of Alberta dataset.
SCORE outperforms a motion model constraining acceleration, and matches the performance of motion
model constraining the scale of the world.
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Figure 9.9: Frames from the NZi3 dataset. This dataset is captured in a modern office environment, including
many repeated features, large amounts of reflective glass, and people. The distances between ceiling lights
and sprinklers (Object 4), and the distances between ceiling beams and top windows (Object 6) are measured
throughout. Some other detected objects do not appear to correspond to particular objects; measurements
of these may have a similar effect to constraining the depth of reconstructed points.
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Figure 9.10: Distributions of sizes of the first five of the 19 object classes detected in the NZi3 dataset.
Some have significantly different size distributions, indicating that the assumption that co-occuring features
correspond to object classes with distinct size distributions is valid. The numbers in brackets indicate the
number of measurements of each object.

SCORE2 BoWSLAM run with SCORE2 to recognise objects and correct scale drift.

Scale MM Reconstructed 3D points are assumed to have depths from a particular distribution, as de-
scribed in Section 8.3.3.

Acceleration MM Constant velocity motion model, as described in Section 8.3.3.

Random measurements SCORE2 modified to make a measurement between two random points, rather
then points on the object. Verifies that SCORE2 works because measurements of instances from
object classes are made, rather than because it constrains the scale of the world.

No MM or OR BoWSLAM run without SCORE2 or any motion model.

Figure 9.11: Motion models used for comparison with SCORE2.
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Experiments on indoor and outdoor datasets demonstrate that object classes with a variety of different size
distributions are found, and SCORE2 is verified to use the different sizes of these different objects to correct
scale drift.

9.6 Future work

There are many small improvements that would improve the performance of SCORE2, in particular more
sophisticated methods for choosing and robustly measuring more complex objects. In this section some
planned improvements and extensions are detailed.

Section 8.5.1 discussed plans to modify the pose graph optimisation framework used by BoWSLAM so that
relative scale estimates are also refined. This modification could also be used to improve SCORE2. While
SCORE2 currently assumes that measurements of objects are independent, this is not true in general, as
errors in scale estimates are correlated with each other. While SCORE2 works well despite this assumption,
the assumption could be avoided if distributions of relative object sizes were maintained instead. An object
measured in two locations would then introduce a constraint between scale estimates in the two different
locations, although at the expense of increasing the cost of the pose graph optimisation, as different sections
of the map would no longer partition so easily.

In addition to the scale, many objects also occur in particular orientations (i.e. ‘upright’). By identifying
classes of objects which usually have the same orientation, errors in orientation could also be corrected.

The main limitation of SCORE2 results from the emphasis in this thesis that a robot must be able to operate
without any prior knowledge of the environment to be explored. As a result, our BoW scheme is designed
to build a dictionary dynamically, to avoid the need for training data. To integrate with BoWSLAM and
this BoW scheme, SCORE2 learns classes of objects dynamically. For many practical applications however,
training data, and prior knowledge about the robot’s environment and the objects it contains, is available.
In this case, both the BoW dictionary, and classes of objects which are likely to be encountered, could be
learned in advance. Examples of object classes might include cars, bicycles, people, and household objects;
these are amongst the 20 categories which are recognised by schemes competing in the PASCAL Visual
Object Class challenges Everingham et al. (2008); many of these schemes are BoW based and some achieve
recognition rates of around 30% of object occurances, in real-time (Uijlings et al., 2009).

Pre-defined object classes could provide absolute scale estimates wherever they were observed, and in addition
could assist navigation in several other ways. Objects could be used to aid feature matching, for example
by identifying which features are likely to be on moving objects (such as people), or alternatively could be
used as features, and be matched between frames. As many OR schemes aim to recognise objects regardless
of pose or scale, these features would form highly effective perspective-invariant descriptors, and possibly an
even lower framerate could be used, leaving more resources for the processing required for OR.

BoW location recognition could also be improved if frames were represented as sets of objects. In this thesis,
almost all loop closure events in the datasets presented are detected, however one significant loop closure
event is missed in the Suburban dataset, when the camera travels down a road in the opposite direction to the
previous visit (Figure 9.12). In this case few features are visible from both directions, but a representation
of the frames in terms of the objects they contain (which includes bikes, a glass building and road markings)
could allow them to be matched. Detecting this loop closure event would enable the most significant error
encountered when using the Suburban dataset to be corrected (Figure 8.16(a)).

The BoW representation used in BoWSLAM is not quite the same as those used for OR. In BoWSLAM, the
BoW scheme uses images described by simple patch descriptors around FAST corners. These descriptors
are suitable for relative pose computation, enabling the BoW representation to be used to obtain cheap
correspondences. When BoW schemes are used for OR however, it is often found that descriptors sampled
systematically from across images are more effective, as are combinations of descriptors (Uijlings et al.,

162



Figure 9.12: An example of two frames where loop closure is not detected. Loop closure is very challenging
when frames are captured from completely different viewpoints, and fails for these frames, resulting in
uncorrected scale drift (Figure 8.16). High-level representations of these frames in terms of the objects they
contain may allow frames like these to be registered however.

2009; Hays and Efros, 2008; Li and Perona, 2005). To develop a SLAM scheme based around OR, these
representations should be investigated further.
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Chapter 10

Real-time aerial image mosaicing

Abstract

This chapter describes a scheme for seamlessly stitching together images captured from an
aerial platform, in real-time, in order to provide an operator with a larger field-of-view. Both
recent images, and images from earlier in a flight are used. To obtain real-time performance
several of the latest computer vision techniques are applied: firstly the Bag-of-Words image
representation allows overlapping images to be found efficiently, and provides cheap wide-baseline
correspondences between them. Secondly the BaySAC robust estimation framework allows images
to be registered efficiently from a prior motion model combined with large numbers of potential
matches between cheap image patch descriptors. Thirdly an efficient seam-placement algorithm
allows the rendering of a visually attractive mosaic. Results are presented on two sequences of
high-resolution images, captured from a microlight and a UAV.

10.1 Introduction

This thesis has described a set of robust techniques which allow a robot to position itself from a stream of
images. This set of techniques is not only applicable to robot positioning however; a related problem with
very similar demands is real-time aerial image mosaicing, and in this chapter we describe how the techniques
developed to enable BoWSLAM to robustly navigate visually challenging environments can instead be applied
to this problem.

Image mosaicing is the process of joining overlapping images together to form a larger image, hence enlarging
a cameras’ field-of-view. One application for this is to increase the field-of-view of a camera streaming images
back from an aerial platform, such as an aeroplane or UAV (Unmanned Aerial Vehicle), without the additional
cost, and in the case of a UAV lens weight and/or bandwidth requirements of capturing larger images in the
first place. This aids an operator by keeping features of interest in view for longer.

This chapter describes our scheme for real-time mosaicing of aerial images. High-resolution images are
stitched together around the latest image, providing a seamless wide-angle view of the surrounding area, in
real-time. Three innovations make this possible: firstly actively searching for adjoining images using the
Bag-of-Words (BoW) algorithm, enabling the use of both recent images and images from earlier in the flight.
Secondly, efficient computation of perspective transformations between images, combining correspondences
provided by BoW with the BaySAC framework and a prior motion model where available. Thirdly, an
efficient shortest-path algorithm that finds visually unobtrusive seams between frames, enabling a seamless
mosaic to be rendered. No previous scheme has had this capability to generate large seamless mosaics in
real-time.
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This chapter is organised as follows: the following section describes the latest contemporary mosaicing
techniques and their limitations; Section 10.3 describes our more efficient approach, Section 10.4 presents
experimental results; and Section 10.5 discusses these results.

10.2 Background

There has been extensive research into image mosaicing; the review papers by Szeliski (2006) and Zitová
and Flusser (2003) describe this literature in detail. Many of these methods however make assumptions
that are not true for aerial images, or are computationally expensive batch processes for producing massive
Google-Earth-style mosaics, so in this section we will concentrate on those techniques that are most likely
to be suitable for real-time mosaicing of aerial imagery.

Zitová and Flusser (2003) identify four stages that most image mosaicing and registration processes have in
common. These are:

1. Feature detection Salient or distinctive elements of each image are identified and located.

2. Feature matching Correspondences between features are established, typically by comparing feature
descriptors.

3. Transform estimation The correspondence between features is used to determine a transform that
maps one image to the other.

4. Image Composition The images are transformed and aligned with one another. Some form of
interpolation is often applied to blend the images.

In general to align two images of the same scene the images must be mapped onto a model of the 3D surface
shown, which may be computed dynamically from the images or obtained from other sources. Systems
building these 3D mosaics include the offline processes used to generate mosaics used in applications such
as Google Earth1 or Microsoft Photosynth2, and incremental procedures which are not currently practical
in real-time, but eventually aim to produce mosaic-based 3D maps of a robot’s environment, such as the
underwater mapping scheme by Johnson-Roberson et al. (2010) and the aerial image mosaicing schemes by
Bryson et al. (2010) and RavAcha-etal-2008. For images from an aerial platform however, we can generally
assume that the ground is approximately planar, i.e. it is viewed from sufficient distance that relative depth
variation is low and parallax is small. This allows a simpler model to be used: two images of a planar surface
captured through a pinhole camera are related by a perspective transformation (Hartley and Zisserman,
2003, Chapter 4): if two images each show the same plane, then there is a homography (3 × 3 matrix) H
such that for all x in the first image and x′ in the second image (represented in homogeneous coordinates),
Hx = x′.

For many mosaicing applications simpler models are appropriate: for a rotating camera at a fixed location
(all points are on the plane at infinity), a simple 2D translation and 1D rotation is sufficient to align
two images. For a strictly down-pointing camera on an aerial platform a similarity transform (rotation,
translation and scale) is sufficient. For a camera with a small field-of-view the perspective transformation
may be approximated with an affine transformation: Ax + t = x′ for a 2× 2 transformation matrix A and
2D translation t.

1http://earth.google.com
2http://photosynth.net
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Feature detection and matching

The first stage in estimating the transformation between two images is to find matches between features
in one image and the same features in the other image. These features are usually points within each
image chosen to be localisable and repeatable, such as Harris Corners (Harris and Stephens, 1988) or SIFT’s
Difference-of-Gaussian blobs (Lowe, 1999). A descriptor vector describing the area around each feature is
then extracted, for example a SIFT feature or just a simple image patch (Szeliski, 2006). Possible matches
between these descriptors are then found, for example by pairwise comparison.

Transform estimation

Given at least four point correspondences, a perspective transform can be estimated via the Discrete Linear
Transform, or DLT (Hartley and Zisserman, 2003, Section 4.1). This linear least-squares method reduces
the effects of noise in the image measurements. Least-squares solutions are, however, susceptible to being
corrupted by outliers, which are common amongst correspondences due to repeated similar-looking features
and because of moving objects in the scene. To overcome this Random Sample and Consensus (RANSAC)
approaches are commonly used (Fischler and Bolles, 1981). RANSAC works by repeatedly selecting small
random subsets of correspondences (hypothesis sets) from which to compute candidate solutions. Each
candidate solution is compared with the entire data set until a solution compatible with a large number of
correspondences is found. These are assumed to be inliers, and a least-squares solution is computed from
this inlier set.

One mosaicing scheme closely following this pattern is the scheme described by Brown and Lowe (2007) for
producing panoramic photographs from a set of still images. SIFT features are used to firstly to identify
which frames overlap, then RANSAC is used to compute perspective transforms between these overlapping
images. Image boundaries are blended together with a multi-scale blur to smooth edges in areas of low detail,
while preserving structure in areas of higher detail. While results are visually impressive, performance is far
from real-time, taking several minutes to mosaic 10 images.

Similar schemes include the system by Rong et al. (2009), which matches SURF features between microscope
slides to produce one image of a larger sample, however despite the simple motion model this still requires
tens of seconds per frame; and the system by Turkbeyler and Harris (2009) which registers batches of images
using RANSAC, producing impressive globally consistent mosaics, although not in real-time, partly due to
the expensive optimisation needed to ensure globally consistent transforms.

An alternative to feature-based image matching is to directly align the images to one another, by using
correlation across entire images to estimate the transformation between them, thus replacing the first three
steps of the process. Nielsen et al. (2008) use a Fourier transform to calculate the correlation between
images from a camera spinning about the vertical axis, and render a cylindrical mosaic at 30Hz, however
this simple model has predictable motion with only one DOF (the camera orientation), and generates a
mosaic of fixed size. Similarly Tegolo and Valenti (2001) find similarity transforms between pairs of aerial
images by brute-force search, however this takes 88 seconds per 256 × 256 frame due to direct alignment’s
complexity exponential in the number of parameters in the model being fitted, and hence we do not consider
a direct approach feasible for a real-time system where perspective effects are significant.

As is the case of SLAM, the camera’s motion can often be used to track features from one frame to the
next. For example, the scheme described by Civera et al. (2009a), which stitches together images captured
by a stationary rotating camera to produce a spherical mosaic. A Kalman filter and a model of the camera
rotation predicts the region of a future frame in which each tracked feature will lie. This region is then
searched for the corresponding features. This approach works well at high frame-rates, where the regions
searched for each feature are small, however at lower frame-rates or during rapid image motion large regions
must be searched for each feature, making a tracking approach considerably more costly and error-prone
than a wide-baseline approach, and in addition a wide-baseline approach is still needed if images from earlier
passes are to be registered. In aerial images large image motion often occurs due to camera rotation, and it
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is more desirable to use available bandwidth for boosting the total area imaged, rather than for transmitting
large numbers of almost-entirely overlapping images, making tracking unsuitable for our application.

Image composition

Once transforms between images have been computed a mosaic can be rendered by choosing one image, then
warping every other image to the same coordinate frame. However the two images will rarely line up exactly,
due to a combination of small errors remaining in the transform estimate, uncorrected lens distortion, and
intensity variation between images. In the case of aerial images the fact that the ground is not exactly planar
adds to this misalignment. A näıve approach to composition, laying each image over the existing mosaic
results in visible and potentially distracting artefacts due to straight edges in the image (such as roads and
boundaries) being broken at the join, and the new straight edges appearing along borders (Figure 10.2). Two
common solutions to this problem are firstly to hide seams by interpolating between overlapping images, or
secondly to choose seams minimising visual discontinuities.

A variation of the first approach is used by Brown and Lowe (2007), which successfully hides seams, although
moving objects or poor alignment can result in multiple images of objects appearing (‘ghosting’). A similar
approach could be feasible in real-time. Alternatively Levin et al. (2004); Zomet et al. (2006) estimate a
final mosaic by minimising a cost function based on image gradient similarities, however at several minutes
per-frame this would not be feasible for a real-time application.

The second approach is to place a seam between images chosen to be visually inconspicuous. This seam
should cut natural edges in the images at places where they line up (or ideally not at all if possible). Various
methods for finding optimal graph-cuts minimising dissimilarity functions between pixels (Agarwala et al.,
2004; Kolmogorov and Zabih, 2004) or segments (Gracias et al., 2006) have been proposed, however these
methods are currently far-from practical in real-time. An alternative approach is to use Dijkstra’s algorithm
to find the seam (path) where the difference between the two images is minimised (Davis, 1998); this efficient
approach is feasible for real-time processing.

In summary, while numerous mosaicing schemes have been proposed, most are targeted at producing exten-
sive, globally consistent mosaics and are unsuitable for real-time processing. Those systems that do run in
real-time assume camera motion models inappropriate for aerial images.

10.3 Video mosaicing in real-time

The previous section described contemporary approaches to image mosaicing, and their limitations. In this
section we describe our new scheme for real-time aerial image mosaicing, RT-AIM, which follows the same
basic pattern as many existing schemes (summarised in Figure 10.1), but uses the latest computer vision
algorithms to enable real-time performance.

The following sections describe the individual components of RT-AIM: firstly Section 10.3.1 describes the
BoW image representation and how it is used both to find adjoining frames, and to find correspondences
between images; Section 10.3.2 describes how these correspondences are used for image registration; and
Section 10.3.3 describes how seams between registered images are found, and how we efficiently render a
seamless mosaic.

10.3.1 Feature description and the Bag-of-Words image representation

As with BoWSLAM, RT-AIM uses simple descriptors based on image patches centred on corners from the
FAST corner detector (as described in Chapter 4). The highest-scoring FAST corners are chosen subject to
a minimum separation constraint, as often the overlap between pairs of frames is small, so a good spread
of features is necessary to find enough matches. For large, high-resolution images patches sampled from
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For each frame:

1. Add new frame to BoW database:

• Capture new frame from camera

• Detect corners and extract features

• Add image to BoW database

2. Select both recent frames and earlier frames overlapping current frame. For each of
these:

• Find BoW feature correspondences with current frame

• Compute perspective homography aligning image with current frame

3. Render mosaic

• Recurse to find many images surrounding current frame

• Warp each image to align with current frame

• Identify optimal seams between image pairs

• Copy warped images into a global mosaic

Figure 10.1: Overview of RT-AIM, a real-time aerial image mosaicing scheme

across large patches of the image provide more distinctiveness than smaller patches; typically patches sized
66 × 66 pixels are down-sampled to 11 × 11. Extracting FAST corners from a 800 × 600 image takes 30
milliseconds, and extracting 450 patch descriptors and adding them to a hierarchical BoW database takes
typically 4 milliseconds per frame, allowing every frame to be indexed (Figure 10.3). In order to register
images from earlier passes, when features were viewed at different orientations, oriented patches are used.
In aerial images from approximately down-pointing cameras, the changes in perspective and scale between
images is usually small, so perspective-invariant descriptors such as SURF or SIFT are not necessary, and
anyway are too computationally expensive to extract from large images in real-time.

As with BoWSLAM, every image is added to a BoW database, as described in Chapter 5. The BoW
database is used to recognise when two images overlap, so that images from previous visits to a region may
be registered, allowing the cameras’ FOV to be expanded in two directions. Again, the requirement that a
transform is computed is sufficient to ensure that images are not registered incorrectly.

Once images are represented as a BoW, the most similar matches from earlier in the flight are found. To find
all available images in the vicinity of the latest frame we recurse over the images similar to these matches
(including the previous frame). Transformations are computed between pairs of the top few matches. Note
that as large BoW databases can be searched efficiently and effectively, no navigation data is necessary to
find these matches.

10.3.2 Computing relative positions

For aerial images we assume that the ground is approximately planar, and hence images can be aligned with a
perspective transformation (the affine approximation is not sufficiently accurate—alignment errors of about
5% are typical for aerial images). This transformation is approximately linear so can be estimated from
feature-correspondences via the DLT. Ideally, as with relative pose estimation, a nonlinear refinement would
be used to reduce errors further, however in practice transformations appear sufficiently accurate already.

As with BoWSLAM, the BoW image database is used to find correspondences between pairs of frames, and
BaySAC framework is used to fit a transformation to these correspondences. This allows the correct model
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to be found quickly, and inliers to be found from amongst a large number of low-quality N–M matches
without degrading performance. Large numbers of inliers are desirable to minimise errors caused by small
or poorly-conditioned inlier sets. This is important when mosaicing aerial images as there is often only a
small overlap between pairs of consecutive images; this leads to initially high outlier rates, and often poorly
conditioned geometry when matched features lie only in a narrow strip of the image.

To assign prior probabilities to correspondences the following assumptions are made: firstly, without any
knowledge of the camera’s motion, the prior probabilities of each point in an image correctly matching any
point in the other image are uniform (with probability p). Therefore if point i in one image is matched to
Mi points in the other image, the probability of each of the Mi candidate correspondences being correct is
P (i inlier) = p/Mi, and these probabilities are disjoint (each point can be matched to only one other).

Secondly, when we are registering consecutive frames (at times t and t+1) we can use information from the
transformation found between frames t−1 and t, Ht−1,t to predict the locations of each feature in image t+1.
The assumption here is that the velocity at time t is a good initial estimate for the velocity at time t + 1;
a good assumption for fixed-wing aerial platforms. In addition we can estimate the acceleration of image
features3. Probabilities of correspondences being inliers can now be updated to incorporate the following
motion model using Bayes theorem: given a correspondence between two points i = (xi,x

′
i) we assume that

if i is an inlier, x′
i is distributed normally about Ht−1,txi with standard deviation s pixels (about 150 pixels

works well), and if i is an outlier x′
i is distributed uniformly over the image. This gives i the following p.d.f.:

f(i) = f((xi,x
′
i)) =

{

φ(0,s2)(x
′
i −Ht−1,txi) i inlier

1/A i outlier
(10.3.1)

where φ is the 2D normal p.d.f. with each component i.i.d. with mean 0 and variance s2, and A is the image
area.

P (i inlier|Ht−1,t) =
f(i|i inlier)P (i inlier)

P (i inlier)f(i|i inlier) + P (i outlier)f(i|i outlier) (10.3.2)

When N–M correspondences are used, the fact that each point in one image matches to at most one in the
other must also be considered.

P (j inlier|j incompatible with i) = P (j inlier)
1− P (i inlier|Ht−1,t)

1− P (i inlier)
(10.3.3)

10.3.3 Rendering seamless mosaics

Three alternative strategies for image composition were implemented: firstly images are simply warped into
the frame of a single image, producing a mosaic very rapidly but with obvious seams remaining. Secondly a
simple interpolation scheme combines overlapping images with weights in proportion to each pixel’s distance
from the frame’s centre. Thirdly cuts are found between pairs of images that minimise the total squared
difference between the two frames along the cut, using Dijkstra’s algorithm (Davis, 1998).

Figure 10.2 illustrates that the third option is most successful at eliminating artefacts in both man-made and
natural environments; however a search over all paths through the image is costly. Instead we sub-sample
the area to be searched and find a path at this courser resolution. This path is usually visually acceptable,
especially at higher frame-rates when it is only briefly visible.
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(a) No seam removal

(b) Interpolation between images

(c) Optimal seam between images

Figure 10.2: Simply warping images over each other leads to visible seams and broken edged when images do
not quite align (a). The seams are successfully hidden by interpolating between frames, but artefacts around
man-made straight edges still occur (b). An optimal seam between images usually removes both kinds of
artefact (c).
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Figure 10.3: Breakdown of execution time—one 1000× 1000 mosaic containing an average of 6.8 frames is
rendered and displayed per-frame.

10.3.4 Optimisations for real-time operation

A typical breakdown of computation times is shown in Figure 10.3. Once optimised no particular areas
dominate, however many optimisations were necessary to achieve this performance, in particular to speed-up
image warping.

To warp one image into another, we predict where the source image will map to in the destination image,
then iterate over an appropriate area in the destination image, calculating where in the source image each
pixel should come from (using the inverse of the perspective transformation). Only the nearest source pixel
is considered. To make this work in real-time the following optimisations were necessary: firstly, while in
general a perspective transform is computed, often the elements H3,1 and H3,2 are close to zero (i.e. the
transform is approximately affine), and are exactly zero for one image in each rendered mosaic. In this case
a slightly faster affine warp is applied. Secondly, if H3,1 is not too large, the division needed to compute the
source pixel location can be approximated with a binomial expansion: each source pixel location is given by
(x′

s, y
′
s) = (xs/ts, ys/ts) where (xs, ys, ts) = H−1(xd, yd, 1). Given t−1

s at (xd, yd), t
′−1
s at (xd +1, yd) is given

by

t′
−1
s = ((H−1)3,1(x+ 1) + (H−1)3,2y + 1)−1 = t−1

s (1 + (H−1)3,1t
−1
s )−1 (10.3.4)

≈ t−1
s (1− (H−1)3,1t

−1
s ) (10.3.5)

Thirdly, four-channel images are used, so that each three-byte RGB triple is aligned with a 32-bit word,
allowing faster copying of pixels throughout the program, despite the increase in memory required. It may
be possible to improve performance using SIMD instructions or to carry out some processing on the GPU,
however no single optimisation would greatly affect the performance.

The only parts of out scheme with complexity increasing with time are querying the BoW database, and
re-building the dictionary. BoW queries have complexity linear in the number of images, although in practice

3As with single camera incremental structure-from-motion this is not quite the same as modeling the acceleration of the
camera, as image feature motion depends on the plane’s altitude as well as its velocity, so an uninformative value should be
used that suitable for any height the plane is likely to fly.
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the cost of these queries is negligible for up-to tens of thousands of images Re-building the dictionary has
complexity log-linear in the number of images, however this is only necessary while the environment keeps
changing in appearance. Eventually a dictionary suitable for all environments likely to be encountered will
be found.

10.4 Results

RT-AIM is tested with an aerial image sequence from a down-pointing Canon 400D camera attached to
a microlight. 3220 images sized 800 × 532 and covering farmland, forest, coastline and urban areas were
captured at 2.8Hz, then processed sequentially to produce a video-mosaic sized 1200×1000 (Figure 10.4). One
mosaic is generated for every frame, and a frame-rate of 6.2 Hz is maintained, with each mosaic containing
an average of 8 images, often including frames from earlier in the flight.

Table 10.1: Success at finding transformations between image pairs from a stream of 3220 images with
different parametrisations, terminating after 250 iterations.

Method Av. # iterations % Success # inliers on success
BaySAC+MM 172 80% 67
BaySAC 193 69% 73
RANSAC+N–M 245 23% 76
RANSAC+no N–M 209 69% 53

Table 10.1 shows that BaySAC with a simple prior probability model is no more successful than RANSAC
at finding transformations, but finds considerably larger inlier sets, as it makes use of N–M correspondences.
However when a prior motion model (MM) is used, BaySAC clearly outperforms RANSAC, enabling trans-
formations to be found 80% of the time, compared with 69% of the time for RANSAC. The motion model
particularly helps during rapid motion when image overlap is small and a low proportion of potential corre-
spondences are correct. As a result, mosaics rendered when BaySAC is used contain an average of 8 frames,
compared with 5.2 frames when using RANSAC.

The second dataset used is an image sequence captured from a UAV flight in the Antarctic (Barnsdale,
2010). 1115 images sized 640×480 were captured at 2Hz. Despite the self-similar and sometimes apparently-
featureless environment, frames were mosaiced successfully throughout the flight (Figure 10.5). An average
of 5.2 images form each mosaic, an average of 136 inlier correspondences were found between pairs of frames,
and 93% of image pairs where registered successfully.

For higher frame-rate video, images sized 320 × 212 can be mosaiced at 20Hz. Alternatively a larger
1440 × 2000 video-mosaic, filling two computer monitors, is rendered at 3.6Hz, which is still faster than
images were captured. Towards the corners of this mosaic however images are warped with accumulated
sequences of several transformations, and become distorted in places. In future we will investigate optimising
transformations across multiple images in order to prevent this.

10.5 Conclusions

A mosaicing scheme has been described that enables the mosaicing of images captured from an aerial plat-
form, hence providing a larger field-of-view for the operator. Images from throughout the flight are registered
and stitched together seamlessly in real-time. This real-time performance is enabled by the following four
implementation choices: firstly expensive invariant descriptors are not necessary for aerial images; simple
oriented image patches chosen around FAST corners provide good distinctiveness at a fraction of the cost.
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(a)

(b)

Figure 10.4: These mosaics include images from earlier in the flight, found by BoW.
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(a)

(b)

Figure 10.5: Mosaicing succeeds in a wide range of environments, including difficult visually sparse and
self-similar regions.
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Secondly, in order to robustly match sufficient numbers of features between frames, the BaySAC framework is
used, which reduces costs compared to conventional RANSAC and enables an accurate perspective transfor-
mation to be found from large numbers of poor-quality correspondences. Thirdly, the BoW algorithm allows
images near to the current frame to be found from throughout the flight, and in addition provides cheap
wide-baseline correspondences between pairs of frames. Finally, an efficient optimal cut-finding algorithm
applied to subsampled images, together with an optimised image warping procedure allow large mosaics to
be rendered and displayed at 6Hz, over twice the framerate at which images were captured.

This chapter has demonstrated an alternative application of techniques developed in this thesis for robust
real-time robot positioning. The BoW scheme used to detect loop closure for mobile robot positioning has
allowed overlapping images to be detected, and the BaySAC framework has been used to make effective use
of N–M correspondences, with fast and reliable matching aided by incorporating prior probabilities from an
image-feature motion model.
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Chapter 11

Conclusions

This thesis has described a new single camera SLAM scheme, BoWSLAM, which can accurately position a
camera over long tracks through a range of visually challenging environments. In one experiment, BoWSLAM
is demonstrated mapping a 25 minute 2.5km trajectory through a dynamic outdoor environment in real-time,
without any other sensor input; considerably further than previous single camera SLAM schemes (Section 8.2).
Key to this performance is the development and selection of a combination of schemes which are robust to
the errors which occur when positioning using computer vision. Positioning is possible even with low cost
cameras, including a Contour HD mountain bike helmet camera, and a Sony Handycam digital camcorder,
demonstrating that a single camera is a suitable low-cost sensor for robust long-term SLAM.

To enable BoWSLAM to navigate previously unknown environments, several new algorithms were developed.
Firstly, a BoW scheme which reliably detects when two images show the same place, despite substantial
changes in the scene, was developed (Chapter 5). The new BoW scheme incrementally builds a hierarchical
BoW dictionary as the robot explores, and the BoW scheme is used to accurately recognise when the robot
visits places which have been visited previously. In a large indoor experiment, 1374 of 5066 images are
matched to their correct match from a training database, while only 51 are incorrectly matched. This
corresponds to a precision of 96% at a recall rate of 27%, which is comparable with leading contemporary
schemes (Section 5.5.2). Previous BoW schemes either build a non-hierarchical BoW dictionary incrementally,
and do not scale to large environments, or build hierarchical dictionaries using a slow, offline training process,
which requires training data appropriate to that environment (Section 5.3.3). The new BoW scheme not
only requires no prior training, but also enables wide-baseline correspondences between frames to be found
efficiently, and is used in BoWSLAM both to detect loop-closure, and to select nearby frames from which to
compute relative positions.

Secondly, to robustly compute relative camera poses from pairs of images, a new RANSAC sampling strategy,
BaySAC, was developed (Chapter 7). BaySAC successfully registers images despite high rates of outliers
from moving objects, or limited overlap between frames, and reduces the time needed to compute relative
poses. BaySAC makes effective use of matches between multiple similar-looking features, and by combining
BaySAC with the cheap, wide-baseline correspondences available from the BoW algorithm, multiple position
hypotheses can be computed for each frame. In an experiment to compute the relative pose of images captured
in an outdoor environment, BaySAC reduces the failure rate by 78% when compared with RANSAC, with
negligible additional cost (Section 7.4.2).

Thirdly, to enable accurate global maps to be constructed from these multiple position hypotheses, despite
the occasional gross error, a novel graph-based map representation was developed. This graph models relative
poses, and in a dual graph models the relative scales computed between relative poses. Multiple redundant
relative pose estimates for each robot position are included in the graph, and from these, only the most
reliable are selected. This outlier-free submap is optimised to generate an accurate global map, using the
TORO framework.
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Fourthly, to address the problem of scale drift which occurs when navigating using a single camera, the
SCORE2 scheme was developed. SCORE2 uses the BoW image representation to learn classes of objects
present in the environment. Objects are measured, then the distributions of object class sizes are estimated.
Subsequent observations of the same classes of objects enable estimates of scale to be improved. SCORE2
successfully reduces scale drift by 75% while navigating an indoor environment, and reduces accumulated
errors by 64% while navigating a large outdoor environment.

The schemes which have been developed for BoWSLAM have many additional applications. One application
of the combination of robust algorithms proposed is the video mosaicing scheme described in Chapter 10, in
which high resolution images from a UAV are stitched together in real-time in order to enlarge the camera’s
field of view. An additional application for the BoW scheme is in the pedestrian navigation system described
in Section 5.5.2. In this system, the BoW scheme provides regular absolute position updates by recognising
the pedestrian’s location in a previously-mapped building. These updates are used to correct drift in the
position estimates obtained by integrating measurements from a foot-mounted IMU.

In the first chapter of this thesis, five requirements for robust positioning using a single camera were proposed.
Firstly, I proposed that a robust single camera SLAM scheme should be able to actively detect loop closure
by recognising places which have been visited previously. Chapter 8 demonstrated that the BoW component
of BoWSLAM can reliably detect loop closure events, and can even re-localise the robot after it has become
completely lost.

The second proposed requirement was that the robot must be able to register a sequence of frames from a
video, even when many of these frames are corrupted by occlusion, motion blur, or erratic camera motion.
Again, Chapter 8 shows that positions can be computed despite sequences of frames containing motion blur,
total occlusion, and erratic motion. Some environments still present significant challenges however, and dur-
ing rapid motion, expensive scale-invariant descriptors are required, which increases processing requirements.

The third proposed requirement was that position estimation must be robust in the presence of moving
objects, and in self-similar environments. The BaySAC robust estimation framework, described in Chapter 7,
is shown to successfully compute relative poses in the presence of moving objects, and can efficiently find
inliers amongst large numbers of matches between similar-looking features in images of Antarctic ice, and
in repetitive indoor environments. As part of BoWSLAM, position estimates are computed despite multiple
moving objects, including cars and pedestrians.

The fourth proposed requirement for successful single camera SLAM, was the ability to reject the erroneous
position estimates which will inevitably occur, before they corrupt the global map. This is demonstrated
by generating global maps using the TORO framework using only a subset of the most reliable position
hypotheses. Even though some position hypotheses do contain gross errors, these are successfully avoided
when position estimates to optimise are selected. Even if erroneous position hypotheses were selected and
did corrupt the optimised map, future optimised maps will not contain these position hypotheses if more
reliable relative positions become available, allowing complete recovery.

The fifth criteria for long-term operation is that the cost and complexity of SLAM must be low enough
that a usefully large environment can be explored, and costs must grow only as a function of the area
which is explored. BoWSLAM has been demonstrated positioning a camera in real-time along a 2.5km
path, and is demonstrated on simulated data to scale to environments several times that size (Section 8.4).
This is comparable to the size of many environments in which robots will one day operate, for example
inside buildings. The next challenge is to switch between SLAM and localisation-only when moving in or
out of previously mapped areas. Currently frames are occasionally discarded when captured from the same
location as previous frames, and the t-spanning subgraphs which are optimised grow only slowly when re-
visiting areas, but for long term operation the complexity should not grow at all when previously mapped
areas are visited.

In summary, BoWSLAM has demonstrated that all of these criteria can be met for a single camera SLAM
system, however additional work on all of BoWSLAM’s components would always improve performance, and
allow more challenging environments to be navigated.
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11.1 Further work

Each component of BoWSLAM has been developed to the level necessary to successfully navigate challenging
environments, however each could be improved further, as described in each chapter. I believe that the most
significant improvement in robustness could come from a higher level representation of the world, where
images are represented in terms of the objects they contain, and a map is built consisting of these objects.

In the mean-time, BoWSLAM can already reliably navigate many environments, and I plan a live imple-
mentation, to position either a remote-control robot platform, or a pedestrian streaming back images from
a camera-phone.
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Appendix A

Least-squares optimisation

The Singular Value Decomposition, and Levenberg-Marquardt’s algorithm, are used frequently throughout
this thesis for linear and nonlinear least-squares optimisation respectively.

A.1 The Singular Value Decomposition for linear least-squares

optimisation

The Singular Value Decomposition (SVD), described in Hartley and Zisserman (2003), Appendix 5, is a
widely-used matrix decomposition which enables least-squares solutions to overdetermined systems of linear
equations to be found efficiently. A n×m matrix A is decomposed as:

A = UDVT (A.1.1)

where D is a n×m matrix with the singular values of A on the diagonal, in order of decreasing size; U is a
n×n orthonormal matrix; and V is a m×m orthonormal matrix. The SVD is useful for finding least-squares
solutions to systems of equations of the form Ax = 0; if A is overdetermined then the right-most column
of V is the least-squares solution for x, and if if A is underdetermined then the right-most m− n columns
of V form a basis for the space of solutions for x. The SVD is used for computing first-approximations to
essential matrices and perspective transformations between images, and to correct scale drift around cycles.

A.2 Levenberg-Marquardt nonlinear least-squares optimisation

As SLAM is fundamentally a nonlinear optimisation over landmark observations and the robot pose (or
trajectory), a good ground-truth solution can be obtained by a full nonlinear optimisation. One algorithm
which can be used for this optimisation is Levenberg-Marquardt’s algorithm for least-squares optimisation.
Levenberg-Marquardt’s algorithm finds parameters which minimise functions which can be written as a
sum-of-squares, for example to find the parameter vector x minimising the scalar function e(x) defined as:

e(x) =

N
∑

i=1

[f(x)]
2
i (A.2.1)

Functions of this form include expressions for the weighted sum-of-squared errors; in this case, if errors are
Gaussian, and are weighted by their information, the global minimum of the function is the MLE of the
parameters.
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Levenberg-Marquardt’s algorithm, described in Hartley and Zisserman (2003), Appendix 6, is an iterative
gradient descent algorithm based on the Gauss-Newton method. The Gauss-Newton method works as follows:
starting from some approximate initial solution, x0, the Jacobian matrix J of partial derivatives is computed
(either numerically or analytically). The Hessian matrix of second derivatives is also estimated (usually
approximately, from the Jacobian; H ≈ 2JTJ). From these matrices an update d to the vector x in the
direction of steepest descent is computed, so that xi+1 ← xi + d. This process is repeated, and xi usually
converges to a minimum of e.

Levenberg’s improvement to this algorithm (Levenberg, 1944) is to damp the update vectors, by adding a
dynamically-varying damping factor to the Hessian, to increase the chances of convergence when far from
the minimum, while still converging quickly while nearby. Levenberg’s method is particularly useful when
the Hessian is near singular (so the update required is poorly determined), however in other situations the
solution converges too slowly. Marquardt (1963) proposed that the damping factor chosen is proportional
to the curvature, and this speeds up convergence in some situations (Lampton, 1997). In some situations,
including SLAM, a reasonably accurate initial solution is needed in order to avoid false minima.

Each iteration of Levenberg-Marquardt has complexity cubic in the number of parameters, as a linear system
is solved to find the update. In the case of SLAM, the Jacobian matrices are often sparse, so a sparse matrix
implementation can reduce costs (although loop closure introduces correlations between distant poses, so the
algorithm still has cubic complexity). For problems with fixed numbers of parameters, for example optimising
relative poses to minimise Sampson’s error, Levenberg-Marquardt optimisation can be very cheap.
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Appendix B

Derivation of corner localisation error

p.d.f.

This appendix derives the distribution of feature-point localisation errors that would be obtained from a
perfect pixel-resolution corner detector, as shown in Figure 4.9.

In the experiment described in Section 4.4.1, the distance between the detected location of a corner in one
image transformed into the other image, and the location of the same corner detected in the other image,
‖E‖2, is measured. Figure 4.9 shows this situation. A perfect pixel-resolution corner detector will measure
the corner’s location to be the nearest pixel centre to the location of the corner in the world, projected into
the image. In this case, the distribution of errors observed is derived from Figure 4.9, and the properties of
the p.d.f. (Probability density function; Wikipedia, 2010) as follows:

ei = (eix, eiy) where eix, eiy ∼ Unif

(

−1

2
,
1

2

)

, i = 1, 2 (B.0.1)

⇒ total error E = e1 + e2 = (e1x + e2x, e1y + e2y) (B.0.2)

Therefore Ex, Ey each have p.d.f. f given by:

f(t) =

{

1− |t| −1 < t < 1

0 otherwise.
(B.0.3)

Therefore E2
x, E

2
y each have p.d.f. F given by:

F (t) =

{

3(1− t)2 0 < t < 1

0 otherwise.
(B.0.4)

The p.d.f. of the total absolute squared error, |E|22 = E2
x + E2

y , is then given by convolving F with itself:

(F ∗ F ) (s) = g (s) =

{

− 1
4s

3 + 3
2s

2 − 3s+ 2 0 < s < 2

0 otherwise.
(B.0.5)

Integrating to s = r2 gives the c.d.f. of errors we would expect to observe from testing an ideal corner
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detector:

P
(

|E|22 < r2
)

=

∫ r2

s=0

g (s) ds (B.0.6)

=











0 r ≤ 0

− 1
16r

8 + 1
2r

6 − 3
2r

4 + 2r2 0 < r <
√
2

1 r ≥
√
2

(B.0.7)

and differentiating gives the p.d.f.:

N (r) =

{

− 1
2r

7 + 3r5 − 6r3 + 4r 0 < r <
√
2

0 otherwise.
(B.0.8)

This p.d.f. is plotted in Figure 4.10, and has shape similar to the Rayleigh distribution. Its expectation is
128
315

√
2 = 0.57466 pixels. This result is used to demonstrate how close pixel-resolution corner detectors are

to achieving the highest localisation accuracy that is possible.
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Glossary

AUV Autonomous Underwater Vehicle; an au-
tonomous robotic submarine.

Baseline The distance between two camera positions.
The baseline is fixed for a stereo camera, but
must be estimated relative to previous baselines
for a single camera, leading to scale drift.

BoW Bag-of-Words image representation; a compact
representation of an image in term of the set of
features it contains.

c.d.f. Cumulative density/distribution function; given
by the integral of the p.d.f.

Data association The problem of matching landmarks measured
by a robot’s sensors to previously measured
(mapped) landmarks. Data association failure
often leads to gross errors.

DOF ‘Degrees-of-freedom’; describes the space in
which a robot can move. An upright robot mov-
ing on a plane has 3 DOF motion (its pose has
a 2D position together with a 1D heading ori-
entation), whereas in an AUV may have 6 DOF
motion (it may move in three spatial dimensions
and rotate about any axis).

FastSLAM Popular particle filter-based SLAM framework.
FOV Field-of-view; the angular area viewed by a

sensor (such as a camera). For example a
panoramic camera has a 360 degree FOV.

GNSS Global Navigation Satellite System: a system
using signals from a satellite network to posi-
tioning a receiver, for example GPS.

GPS Global Positioning System: the most complete
and widely-used GNSS system.
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Gross errors Errors which are many times larger than would
ever be observed if measurements were approx-
imately normally distributed (e.g. an error ten
times the mean error).

Heuristic algorithm An algorithm which in practice often produced
a good solution, but which does not always com-
pute a correct solution.

i.i.d. Independent and identically distributed random
variables.

IMU Inertial measurement unit; a versatile position-
ing sensor combining several accelerometers to
measure 3D acceleration and rotation.

Localisation Positioning with respect to a map.
Loop closure The event when a robot visits a previously-

visited location. Detecting the loop closure
event is needed to generate a consistent map,
and helps to correct accumulated errors.

LSA Latent Semantic Analysis; a heuristic machine
learning algorithm for identifying sets of co-
occurring features from training data.

MAV Micro Air Vehicle; a miniature UAV. MAVs are
often inspired by flying insects.

MLE Maximum Likelihood Estimate; the estimate of
a problem’s parameters which are most likely
given the data (e.g. the map which is most likely
given the observations).

OR Object recognition; the process of identifying
that an image contains an instance of a partic-
ular object (e.g. a red Subaru Legacy). Object
class recognition refers to identifying that an im-
age contains an instance of an object class (e.g.
a car).

p.d.f. Probability density/distribution function
Pose The combination of a robot’s position and ori-

entation.

SAD “Sum of absolute differences”; a measure of er-
ror between two vector quantities (such as a pair
of descriptors); sometimes used for comparing
vectors instead of the SSD, as it is less sensitive
to single outliers.

Scale The robot’s estimate of the scale of the world;
scale is equivalent to baseline length, which is
modelled using a lognormal distribution.
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SLAM Simultaneous Localisation and Mapping: A
SLAM scheme allows a mobile robot to position
itself in an a priori unknown environment, by
building a map of its environment as it explores,
and simultaneously localising itself in this map.

SSD “Sum of squared differences”; a measure of error
between two vector quantities (such as a pair of
descriptors); given a vector with normally dis-
tributed components with equal variance, the
member of a set of vectors which is most likely
to be drawn from the same distribution is the
one with the lowest SSD from the first vector.

SVD Singular Value Decomposition; a matrix decom-
position used widely for solving linear least-
squares optimisation problems; described in Ap-
pendix A.1.

TF-IDF Term Frequency-Inverse Document Frequency,
a heuristic measure of the distinctiveness of an
image word.

UAV Unmanned Aerial Vehicle; including fixed-wing
aircraft, rotorcraft, airships, and MAVs.
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