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ABSTRACT

Vine pruning is an important part of vineyard management,
and pruning is the most expensive task in the vineyard which
has not yet been automated. Every year, most new canes
must be removed from the vine, and the choice of canes to
retain impacts vine yield. To automate the process of vine
pruning, a vine pruning robot must make decisions on what
canes to remove or to keep, based on a 3D topological model
of the structure of the vine. In this paper we present an
Artificial Intelligence (AI) system for making these decisions,
developed and evaluated using simulated vines. A viticulture
expert evaluated our approach by comparing it to pruning
decisions made by a pruner with a skill level typical of human
pruners. Our system successfully pruned 30 % of vines better
than the human and 89 % at least as well. These results
demonstrate that the vine pruning problem is solvable using
current computing technologies, and that automating the
pruning process has the potential to improve vine quality
and yield.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Industrial automation; I.2.10 [Artificial Intel-
ligence]: Vision and Scene Understanding—Perceptual rea-
soning
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1. INTRODUCTION
Computer vision and artificial intelligence techniques are

advancing to the point where complex agricultural and hor-
ticultural tasks can be automated [13]. Automating these
tasks requires the expert knowledge of humans to be com-
puterised, which is usually achieved by developing an expert
system [17, 12]. This paper describes the development of an
an expert system for determining how to best prune vines,
for use in a vine pruning robot. The system is developed to
make pruning decisions based on a 3D topological model of
vines from a computer vision vine modelling system, and de-
termines the best way to prune a vine (henceforth known as
a “pruning scheme”), based on knowledge, rules and training
data collected from vine pruning experts.
We begin by investigating standard AI approaches in Sec-

tion 3, including classification and search algorithms. Our
completed AI system uses a cost function with parameters
learned from examples of well-pruned vines. Brute force
search over all possible pruning schemes for a vine is used
to find the optimal one. Expert knowledge is used to design
features of a pruning scheme such as the length and height
of the canes, which form a low-dimensional representation
of pruning decisions. Section 4.2 describes the development
of the cost function for a pruning scheme, which is a linear
combination of 12 features. The relative weightings of the
features is determined using training data acquired from a
pruning expert, as explained in Section 4.3. Adaptive ran-
dom search is used to optimise the weightings to best match
how the training vines are pruned.
In Section 5.1 we evaluate our AI algorithm against a

pruner with a skill level typical of vineyard workers. 100
simulated vines were pruned by both our system and the
human pruner, with a viticulture expert rating the quality
of every decision. Our system outperformed the human and
was well received by the viticulture expert. In Section 6 we
discuss the implications of our research and how our system
could be extended to real data.

2. PRUNING PRELIMINARIES
This section provides a background into the task of prun-

ing vines sufficient to understand the rest of this paper. Fig-
ure 1 shows a simulated vine with relevant features labelled.
Vine is used to refer to the entire plant, while a cane is a
single branch. Pruning occurs in winter, at which time a
number of canes are tied down to wires to become this sea-
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Figure 1: A computer-generated vine.

son’s cordons. Canes that grow out of cordons bear fruit in
summer. Pruning also involves cutting a few canes 10-20 cm
from their base to become spurs, where the candidates to
become next year’s cordons will grow out of. “Spur” is also
used as a verb to describe cutting canes in this way. The
head of a vine is the wooden mass at the top of the trunk;
canes that grow directly out of the head are known as bull
canes. An example of a real pruned vine is shown in Fig. 2.
A typical pruning strategy is to leave one cane on either

side of the head to be tied down to become a cordon. An-
other one or two canes (often the lowest to the ground) are
spurred, and all other growths are pruned away. The task
of pruning vines can therefore be reduced to finding the best
canes to spur and tie down for a given plant. For brevity, in
this paper we often refer to “canes to spur” as “spurs”, and
“canes to tie down” as “cordons”.

2.1 Vine Simulator
The AI for the vine pruning robot has been developed in

parallel with the robot’s computer vision systems. However,
the computer vision systems are still some time off being
finished, so vine structure data from real world vines is not
available. In order to facilitate the development of the AI
without this data, we developed a vine simulator (see Fig. 1),
which generates vine structures that are qualitatively sim-
ilar to real vines. The simulated data is designed to have
the same characteristics as what will be extracted by the
robot’s vision, but there is no guarantee this will still be the
case when real data becomes available. Because of this we
investigate general solutions to the AI problem.

3. EXPERT SYSTEMS
In this section we evaluate existing approaches to expert

systems, and discuss their suitability to the problem of prun-
ing vines. All AI algorithms require parameters to be set
to determine how the algorithm operates. These parame-
ters can either be designed using expert knowledge of the
problem, or determined using machine learning algorithms
on a training set of observations [16]. When parameterising
a machine learning algorithm care must be taken to avoid
overfitting and underfitting by choosing the simplest possi-
ble representation that captures the essence of the problem
[18].

Figure 2: A close-up of the head of pruned vine,
with two cordons and one spur clearly visible.

The most successful approaches to expert systems use do-
main knowledge to develop the structure of the algorithm,
before parameterising it with large quantities of observed
data [9]. This is because a huge number of features can
be conceived for any data set, and only a small fraction of
these will be relevant to predictions. Although algorithms
have been conceived to automatically determine which fea-
tures are relevant (a problem known as feature selection), for
small problems it is simpler to utilise existing expert knowl-
edge [8]. Section 6 discusses the use of such algorithms in
future approaches.

3.1 Algorithms
The approaches investigated to solve the problem can be

broadly classified as either classification or search algorithms.
Classification algorithms could be used to classify individ-
ual canes as being good candidates to spur or tie down by
developing a model of what constitutes such a candidate.
These algorithms use the vector-space model, making deci-
sions based on a vector of features of a cane, and therefore
rely on the availability of suitable training data. They have
the advantage of being fast, with running time proportional
to the number of canes on a vine, but do not (natively) con-
sider connections between vines when making decisions.
An alternative approach is to evaluate pruning schemes

holistically, and use a search algorithm to find the best of
all possible schemes for a vine. These algorithms rely on the
development of a fitness functions to quantify the quality
of a particular pruning scheme. The development of such
a fitness function allows good pruning schemes to be iden-
tified using well-studied search algorithms over the space
of all possible pruning schemes. Search algorithms have the
advantage that they are better able to reason about relation-
ships between vines, but can face running time exponential
in the number of canes on a vine. Brute-force search was the
only such algorithm we investigated, because it is feasible for
a problem of this size (see Section 3.1.2).
A number of potential algorithms, including fuzzy logic

and local search methods, were not considered for this prob-
lem.

3.1.1 Classification Algorithms

Our first approach used a decision tree [3] to classify canes,
designed from pruning rules developed by viticulture ex-



perts. The implementation of this algorithm was very sim-
ple, so it was done to establish a worst-case performance
benchmark. The tree performed poorly, adequately pruning
less than 50 % of vines. The reason for this poor performance
is that the rules were under-specified for vines without good
candidates to spur and tie down. This problem, where ex-
perts do not (and often cannot) fully explain their decisions,
occurs often in the development of expert systems [9]. How-
ever, even if the rules acknowledged every influencing factor,
it was clear decision trees were too brittle to be successful in
this problem. This is because there will always be situations
where the algorithm must choose between two undesirable
situations, and enumerating rules for every such decision is
infeasible. We proceeded to investigate algorithms more ca-
pable of making more nuanced decisions.
Numerous classification algorithms could be applied to

this problem, including decision trees [3], artificial neural
networks [20], support vector machines [6] and random de-
cision forests [2]. An advantage of these techniques is that
they are extremely well-studied and proven on a wide variety
of data sets [5]. Of particular interest are random forests,
which Caruana et al. found to be the most accurate classi-
fication algorithm on many standard data sets [5].
Classification algorithms were ultimately deemed to be

unsuitable for this problem because canes cannot be clas-
sified in isolation; for example, one cane may excessively
shade another, making them good choices to tie down indi-
vidually but bad together. Research into vine pruning sug-
gested that that such interrelations between classification
decisions would be prevalent, so these algorithms were not
implemented.

3.1.2 Search Algorithms

The simplest way to select the best pruning scheme given
a fitness function is to iterate through all possible pruning
schemes and find the one with the best score. This is known
as brute-force search, and quickly becomes impractical as the
size of the problem grows [18]. However, selecting 4 canes
to leave and 2 to spur from a vine of 20 canes requires only:

20
C

16

4 C2 =
20!

(20 − 4)!4!

16!

(16 − 2)!2!
= 581400 (1)

cut sets to be evaluated, which could be achieved on a mod-
ern computer in well under a second. This suggests that the
relatively small size of the vine-pruning problem makes a
brute-force search feasible. In addition, this number could be
significantly decreased by first applying some expert knowl-
edge to remove from the search canes that will definitely be
pruned. For instance, healthy canes close to the head will al-
ways be preferred over similar canes further away, and it can
be safely assumed that a vine with an excessive number of
canes will have enough good candidate canes that the outer
ones can be ignored. Excluding pruning scheme from the
search in this way turns a brute-force search into a heuristic
search.
Search algorithms also have the advantage of being able

to easily handle uncertainty. For example, if the robot’s
vision system can only determine features of vines in terms of
probability distributions, the target for maximisation could
be the expected value of the fitness function as opposed to
its value.
The greatest challenge in the implementation of a search

algorithm is the development of the evaluation function.

Hand-designing such a function to measure the quality of
a cut set will require a large amount of parameter tuning.
For example, both weak canes and short canes are bad can-
didates to be tied down, but how would one quantify which
is the worse pruning decision? Section 4.3 describes how we
learned the parameters for an evaluation function from a set
of simulated vines “pruned” by an expert.

3.2 Optimisation
“Optimization problems lie at the heart of most machine

learning approaches” [1]. Many machine learning algorithms
are designed to make certain optimisation methods effective;
for example, artificial neural networks use backpropagation
[16] while support vector machines use quadratic program-
ming [6]. These optimisation methods make assumptions
about the shape of the objective function, so are ineffective
if these assumptions do not hold.
If the objective function cannot be assumed to be convex,

continuous and/or differentiable, stochastic global optimi-
sation strategies are most often used [4]. These methods
are also known as Monte Carlo methods, and search for the
global optimum by randomly exploring the parameter space
according to some distribution. The simplest Monte Carlo
method is Pure Random Search (PRS), which samples the
parameter space uniformly. The solution returned by the
algorithm is the best point found so far, which converges
to the global optimum with probability tending to 1 as the
number of iterations goes to infinity [19]. Adaptive random
search methods change the sampling distribution based on
previous search iterations, typically in order to focus the
search on promising regions of the parameter space [11]. In
practice, adaptive search methods converge faster than PRS,
and will converge if the sampling distribution is always non-
zero over the entire parameter space P. We used adaptive
random search for optimisation in our system.
More complex stochastic optimisation algorithms include

genetic algorithms [10], simulated annealing [15], swarm op-
timisation [14] and tabu search [7]. These algorithms use
various techniques to find new candidates in the parame-
ter space, often combining local search with some means of
escaping local optima. We elected not to implement these
algorithms as they are difficult to implement and require pa-
rameter tuning in order to operate well [11]. Having achieved
satisfactory results with random search, there was no need
to implement a more complicated optimisation algorithm.

4. IMPLEMENTATION
This section describes the development of our expert sys-

tem for automatically pruning vines.

4.1 Brute Force Search
As discussed in Section 3.1.1, classification-based algo-

rithms were deemed to be unsuitable for this problem be-
cause of the tightly coupled nature of decisions about canes.
Because of this, we pursued a search-based approach which
considered pruning schemes as a whole. Having shown (in
Section 3.1.2) that brute force search across all possible prun-
ing schemes for a vine was feasible, we proceeded to develop
this algorithm. The algorithm’s task was to determine the
best n spurs and m cordons on each side, selecting 2(n + m)
canes in total.
First, a list of candidate canes was compiled. This in-

cluded all canes out of the head, spurs or cordons, regardless



of whether they were diseased or of otherwise dubious suit-
ability. Also added to the list were 2(n+m) “null canes”, to
allow the search to include pruning schemes where less than
2n or 2m canes were spurred or tied down. The search was
carried out using the combinations extension to the Boost
C++ library, developed by Hervé Brönnimann1. This li-
brary allowed every pruning scheme (combination of spurs
and cordons) to be iterated over and evaluated. This library
was also used to enumerate every possible pruning scheme
during the training phase.

4.2 The Cost Function
The next step was to develop a means of evaluating the

quality of a pruning scheme, so that brute force search could
be used to find the best scheme. To this end, expert knowl-
edge was used to develop a set of features (x ∈ X) to param-
eterise a pruning scheme, which represented the most impor-
tant factors in making pruning decisions. A brief summary
of these features is shown in Table 1.

Table 1: Pruning scheme feature set. The features in
italics are global to the pruning scheme; the others
are aggregated over all cordons and spurs chosen.

Cordons Spurs

Number missing Number missing

Expected viable length Probability viable

Height Height

Distance from head Distance from head

Angle from ideal Angle from ideal

Bull cane? Bull cane?

The 12 features that make up the feature vector for a
pruning scheme include 2 global features and 5 local fea-
tures each for the spurs and cordons chosen in the scheme.
All features are normalised to values between 0 and 1, and
designed so that they increase as the pruning scheme gets
worse. A simple cost function was developed to describe the
quality of a pruning scheme from its feature vector (x). In
order to minimise the number of parameters need to define
the cost function, a linear form was used:

fp(x) = p · x. (2)

The cost function is therefore a weighted sum of the features
of a pruning scheme. Minimising the number of parameters
in the cost function decreases the possibility of overfitting
when the parameters are trained.

4.3 Training
The remaining challenge was to find the weightings of the

features (p) that result in the cost function that best reflects
the decisions made by human experts. The principal expert
on the project was Dr Valerie Saxton, a viticulture lecturer
from Lincoln University. She provided the training exam-
ples by virtually pruning 100 simulated vines using 1-cane
pruning (n = m = 1). A random selection of 80 of these
vines were chosen as the training set, with the remaining 20
making up the validation set.

1http://photon.poly.edu/~hbr/boost/combinations.html

All we can infer with confidence from each pruned vine
in the training set is that the pruning scheme as a whole
is no worse than any other possible scheme. We therefore
developed a training method to learn the cost function pa-
rameters (p) from the training examples. This was framed
as a global optimisation problem in the parameter space (P).
The optimisation problem can be expressed as:

p
∗ = argmax

p∈P

g(p) (3)

g(p) =

∑
80

i=1
|{x ∈ Xi : f(x, p) ≥ f(x∗

i , p)}|
∑

80

i=1
|Xi|

, (4)

where p
∗ is the optimal parameter vector, Xi is set of feature

vectors for all possible pruning schemes in training example
i, and x

∗

i is the feature vector for the scheme the expert
chose. Concretely, g(p) expresses, across all training exam-
ples, the percentage of pruning schemes the cost function
fp scores worse than the expert’s scheme. We assume that
all other pruning schemes are worse that the expert’s, so we
want to find the p that maximises g(p).
Random search was used to solve (3). The search space

P was the 12-dimensional hypercube with every element of
p ∈ [0, 100], and the search proceeded as follows:

1. Randomly sample p from P according to the distribu-
tion µ.

2. For every vine in the training set:

(a) Compute the cost f∗ = fp(x∗) for the scheme
chosen by the expert.

(b) For every other possible pruning scheme, compute
the cost f = fp(x).

(c) Count the number of incorrectly classified schemes,
that is, the number of schemes with a lower cost
than than the expert’s choice (ie f < f∗).

3. Sum the incorrectly classified schemes over all vines (e)
and record the pair (p, e).

4. Return to 1 and repeat a given number of times.

5. The optimal parameter vector p
∗ is the one paired with

the lowest value of e.

Initially pure random search was used, with the distribution
µ uniform over P. An adaptive search method was intro-
duced to try to accelerate convergence, where µ was changed
after every 10000 iterations. For adaptive search µ was set
such that points within the hyperrectangle bounding the 100
best parameter vectors (with the lowest e values) were sam-
pled 9 times as often as points outside. Section 5 shows
how convergence was sped up by this simple adaptive search
method.

5. RESULTS
The cost function was trained on 80 vines, which could

be pruned in a total of 139,258 different ways. Figure 3
shows how g(p∗) converged over 1 million iterations, or 780
minutes of optimisation. Using adaptive search, the most
accurate cost function scored the expert’s decisions better
than 99.35 % of possible pruning schemes. While this does
indicate that the cost function reflects the expert’s pruning
strategy well, it does not ensure that brute force search will
produce good decisions. Brute force search selects the prun-
ing scheme with the lowest cost for each vine, so its success
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Figure 3: The convergence of pure and adaptive ran-
dom search optimisation.

depends critically on whether the top 0.65 % are good prun-
ing schemes. In Section 5.1 we determine if this is the case.

In order to ensure the parameters were not creating a cost
function that overfit the training data, we measured its ac-
curacy on an validation set of 20 pruned vines. The vines
in this set could be pruned in 24,759 ways, 99.59 % of these
we correctly scored worse than the expert’s decisions by the
trained cost function. The cost function therefore generalises
very well, as it is least as accurate on the validation set as
on the training set.
The brute force search takes on average 0.32 s to execute

on a commodity PC, for a vine with 15 candidate canes
(the largest vines simulated). This is sufficiently fast for the
purposes of our robot, and is small compared to the com-
putation required by the robot’s computer vision systems.
Although the training process took 13 hours it only has to
be performed once, and is therefore not prohibitive.

5.1 Evaluation
With no objective way of determining the quality of prun-

ing schemes, we again made use of Dr Saxton’s expertise to
evaluate the AI. Because every vineyard manager will have
a slightly different opinion of what constitutes good deci-
sions, it is quite reasonable for the same expert to evaluate
the system and supply the training data. We specifically
wanted to compare the performance of our AI against the
status quo in vine pruning: low-skilled, seasonal labour. Our
novice pruner was a Lincoln University student who had ex-
perience in vine pruning but had not studied it at a tertiary
level. He had, in our expert’s estimation, above-average vine
pruning ability compared to vineyard workers.
Using the simulator, we generated an evaluation set of

100 new vines (not part of the training or validation sets),
which were pruned by both the novice and our algorithm.
Dr Saxton then evaluated the pruning decisions made on a
five-point scale:

1. Major problems with the pruning.

2. Should have been pruned differently, will have a nega-
tive effect on the vine.

3. Should have been pruned differently but no harm done.

4. Not perfect but no damage done.

5. As good as possible.
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Figure 4: Quality of the decisions made by the AI
compared to a novice human pruner.

Table 2: Average evaluation score (out of 5) of hu-
man and AI pruners.

Novice AI AI (2-cane pruning)

4.27 4.57 4.10

Finally, we tested the cost function for its ability to gen-
eralise to pruning strategies it was not trained on. The cost
function was trained using examples of 1-cane pruning, so
we used our algorithm to prune 20 vines using 2-cane prun-
ing (n = 1, m = 2). These decision were also evaluated on
the 1-5 scale by Dr Saxton.
The results of the evaluation were extremely positive, with

Dr Saxton remarking on “how good the routine is”, saying
she “would let this pruner loose in [her] vineyard”. Figure 4
and Table 2 show how our algorithm performed compared to
a novice pruner. The pruning decisions made by or algorithm
were scored on average 0.3 points better than the novice
pruner’s decisions.
Comparing pruning decisions head-to-head, our algorithm

pruned 30 % of vines better than the novice pruner and 89 %
at least as well. Our algorithm also satisfactorily (averag-
ing a score of 4.1) pruned a set of 20 vines using the 2-cane
pruning method. This demonstrates the ability of our algo-
rithm to adapt to different pruning strategies. The following
section discusses these results, particularly the two vines for
which our algorithm failed.

6. DISCUSSION AND FUTURE WORK
Our algorithm performed successfully on the majority of

the 100 vines it was evaluated on, but did fail (achieving a
score of 1) on two vines. These are shown in Fig. 5 and illus-
trate limitations of our AI approach. Vine (a) was pruned
badly because downward facing spurs were chosen. Although
the cost function included a term to penalise spurs at bad
angles, this penalty was extremely small. The reflects the
fact that the angle of a cane has almost no impact on its
suitability as a spur, unless that spur is facing down. Be-
cause this occurred so rarely in the training set, a suitable
penalty was not learned. This illuminates two drawbacks
of our approach: decision factors cannot be learned if they
do not occur in the training set, and linear penalties do not
always model how decisions are made. It should be noted
that there is nothing in our approach to stop higher-order



Figure 5: The two worst decisions made by the AI.
Canes chosen to spur are marked in blue, canes cho-
sen to tie down are marked in dark green.

features being added to effectively create non-linear penal-
ties, but we decided against this to minimise the size of the
feature vectors and therefore the chance of overfitting.
In vine (b) only one cane was tied down, a critical mis-

take. This occurred because all the canes on the left side
are bad choices to tie down, as they are short, diseased, bull
canes. The penalty for tying down such canes is less more the
penalty for tying down too few canes. Again, the algorithm
could not learn a greater missing cordon penalty because
there were so few situations in the training set where such
poor canes were chosen.
It is clear that machine learning algorithms will strug-

gle when tested in situations they were not trained for, but
equally clear that it is infeasible to supply them with ev-
ery possible relevant training example. This is a funda-
mental problem in machine learning [16]; the challenge be-
comes designing algorithms that generalise as well as pos-
sible. Many algorithms use regularisation in the learning
phase [18], which biases the search towards simpler (and as-
sumed to be more general) models, at the expense of training
set accuracy. Taking inspiration from this approach, our al-
gorithm could be made more general by biasing the search
towards larger parameters. Because all feature values are
designed to increase as a pruning scheme gets worse, it is
generally true that larger parameters better match how ex-
perts prune vines. Indeed, both failures of the AI could have
been addressed by better parameterisation.

7. CONCLUSION
This paper has presented a detailed account of the success-

ful development of an expert system for pruning vines. We
have demonstrated that computers are able to make good
vine pruning decisions based on a model of vines gener-
ated by a computer vision system. Therefore, the task of
vine pruning can be automated. We have also shown that
automating the task could improve vine quality, as our sys-
tem outperforms an above-average human pruner. It pruned
84 % of vines in an evaluation set perfectly, and 89 % at least
as well as the human pruner. Our approach is now ready to
be tested on data extracted from real vines.
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