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Abstract. This paper examines how the design of imaging hardware
for multi-view 3D reconstruction affects the performance and complex-
ity of the computer vision system as a whole. We examine two such
systems: a grape vine pruning robot (a 4.5 year/20 man-year project),
and a breast cancer screening device (a 10 year/25 man-year project). In
both cases, mistakes in the initial imaging hardware design greatly in-
creased the overall development time and cost by making the computer
vision unnecessarily challenging, and by requiring the hardware to be
redesigned and rebuilt. In this paper we analyse the mistakes made, and
the successes experienced on subsequent hardware iterations. We sum-
marise the lessons learned about platform design, camera setup, lighting,
and calibration, so that this knowledge can help subsequent projects to
succeed.

Keywords: Multi-view reconstruction, 3D reconstruction, camera hard-
ware, camera calibration, lighting

1 Introduction

Computer vision forms an integral part of ever more complex systems, including
robot systems, medical imaging systems, smart vehicle systems, and 3D motion
capture systems. Each system requires imaging hardware including cameras,
lights, and often enclosures to control imaging conditions. This imaging hard-
ware is frequently assembled specifically for the application [1, 19, 23, 11]. In this
paper we argue that careful design of the imaging hardware greatly reduces the
overall development effort required, hence increasing the likelihood of success and
improving overall performance. Computer vision systems chain together many
different processes, from low level segmentation and feature extraction, through
to high level model fitting, with these models ultimately used to make decisions,
e.g. on robot controls, diagnoses. Errors in the imaging process, or limitations of
the imaging process, propagate through the different computer vision algorithms
and affect the performance and accuracy of the system as a whole. In our ex-
perience, much development effort is spent on compensating for mistakes made



2 T. Botterill, M. Signal, S. Mills, R. Green

when designing the systems and collecting data, and more careful design would
simplify and speed up the development process, while improving performance
overall.

This paper focusses on the effects of hardware choices on multi-camera sys-
tems for 3D reconstruction. Multi-camera systems are popular for applications
requiring high-accuracy, high resolution 3D reconstructions. Many design con-
siderations are just as relevant for systems using depth cameras, where similar
challenges with lighting1, image resolution and image quality [8] exist.

The paper is organised as follows: Section 2 summarises how the image acqui-
sition process affects the performance of the computer vision system, and Sec-
tion 3 describes two case studies that we use to illustrate these effects. Section 4
reviews the choice of cameras and lenses, camera positioning, illumination, en-
closure design and calibration procedures. The impact of each decision, trade-offs
required, and lessons learnt from the two case studies are discussed. Recommen-
dations are also summarised in the checklist that is provided as supplementary
material, and from http://hilandtom.com/PSIVT2015-Checklist.pdf.

2 Effects of imaging quality on computer vision

The imaging hardware affects a 3D computer vision system’s performance in
four ways: accuracy, robustness, development cost, and efficiency.

To most straightforward effect of image quality on computer vision systems
is on the accuracy of measurements taken from images, e.g. localisation accuracy
or the accuracy of a 3D measurement. This is the case for many computer vision
methods, including those formulated as a data-plus-spatial energy minimisation
(e.g. active shape/contour models, dense stereo, dense optical flow [22]). Improv-
ing resolution, focus, pixel signal-to-noise ratios, etc. are straightforward ways
to minimise different kinds of image noise [10, 19], which enables more weight
to be given to the data terms, hence increasing accuracy. By averaging across
many pixels, computer vision systems often achieve subpixel or sub-greylevel
accuracy [19, 2].

A much more challenging class of errors in computer vision are the large dis-
crete errors known as gross errors. These errors are generally too large to average
away, and can cause partial or total system failure. Gross errors that create chal-
lenges for multi-view 3D computer vision systems include incorrectly detecting
and/or matching features, segmentation errors, and errors at depth discontinu-
ities. These errors are prevalent when objects are occluded, partly outside the
camera’s field of view, or when their appearance is affected by variable lighting,
reflections, and shadows. A system’s susceptibility to these errors is referred to
as its robustness.

An important effect of imaging conditions on computer vision is on develop-
ment time. When imaging conditions are poor, considerable development time
must be spent on modelling shadows and lighting effects [12], and handling the

1 https://support.xbox.com/en-GB/xbox-360/kinect/lighting
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matching ambiguities and increased outlier rates that result (see, for example,
the vast literature on making RANSAC-based robust matching frameworks per-
form well [9]). In addition, if imaging hardware is redesigned, time consuming
code changes may be required throughout the entire system [19], as the errors
present and the visual effects to model change.

The imaging process also affects computational efficiency: pixel-level algo-
rithms (e.g. segmentation, dense optical flow or dense stereo) may be slower
for higher resolution images, however as soon as a higher-level representation
is obtained (e.g. features are extracted) then the resolution no longer affects
computation times, and higher quality images may improve performance, e.g.
by increasing feature localisation accuracy or by reducing matching ambiguities.
Even pixel-level algorithms may be no slower for higher resolution images if fewer
iterations are required. Later-stage 3D algorithms can be considerably more ef-
ficient when there are fewer outliers: when outlier rates are low, fewer iterations
of RANSAC are needed [9] and efficient non-robust quadratic cost functions can
be used in bundle adjustment [3]. In our experience, and as is often the case in
software [13, Section 25.2], the biggest increases in efficiency come from having
more development time available for optimising and parametrising algorithms
once the rest of the system is working, and once critical loops are identified.
Improving imaging hardware improves computational efficiency by making the
development process more efficient.

3 Case studies

In this paper we use two case studies to illustrate the effects of hardware design
on system performance and development. The first is a grape vine pruning robot,
and the second is a prototype breast cancer screening system. Both use synchro-
nised cameras to image their subject, and use customised imaging enclosures and
artificial lighting to control imaging conditions. Both imaging hardware systems
have been completely redesigned and rebuilt, at considerable expense, as the
importance of the hardware design has become apparent.

3.1 Grape vine pruning robot

The first case study is a grape vine pruning robot [5]. Grape vines are pruned
by selectively cutting canes on each plant. The robot system, shown in Figure 1,
consists of a mobile platform which straddles a row of vines, and images them
with a trinocular stereo camera rig as the platform moves. A computer vision
system builds a 3D model of the vines, an AI system decides which canes to
prune, and a six degree-of-freedom robot arm makes the required cuts. The
main challenge for the computer vision is building a sufficiently complete and
structurally correct 3D model of the vines that the AI can make good decisions
about where to cut, and so that a path planner can plan a collision-free path
for the robot arm to make the required cuts. The project started in 2010, and
has employed up-to five full time researchers and developers (including graduate
students). 27 people have worked on the project in total.
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Fig. 1. The pruner robot’s mobile platform completely covers the vines, blocking out
sunlight (left). Inside are high-powered LEDs, three cameras, a robot arm, a generator
and the desktop PC that runs all of the software (right).

3.2 DIET machine

Fig. 2. The DIET machine, showing two of the five cameras, the actuator, and a silicone
phantom breast. The machine measures 80cm by 71cm by 38cm.

The second case study is the Digital Image-based Elasto-Tomography (DIET)
system, a prototype breast cancer screening system [2]. A breast is imaged by
five cameras while being vibrated, the computer vision system estimates the 3D
surface motion, and the observed surface motion is used to infer the internal
stiffness of the breast, hence identifying tumours. The computer vision system
first identifies the profile of the breast in each image, and reconstructs a 3D
surface model from these profiles. The surface motion is measured using dense
optical flow, then the 3D surface motion is given by fusing the optical flow with
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the reconstructed surfaces. The current DIET machine is shown in Figure 2.
The project started in 2005 and has employed up-to five full time researchers
and developers.

4 Designing a multi-camera system for 3D imaging

This section examines each design decision made when building a multi-camera
system for 3D reconstruction. The case studies are used to illustrate how each
decision affects the performance of the system as a whole.

4.1 Imaging enclosure design

Imaging enclosures allow lighting levels to be controlled, and provide a uniform
background. If lighting levels vary too much, the cameras cannot simultane-
ously image the brightest parts of the scene (where the sensor is saturated)
and the darkest parts (where details are lost in sensor noise). Uniform-coloured
backgrounds aid the foreground/background segmentation—the greater the dif-
ference between the distributions of colours on the foreground and background,
the simpler, and hence more robust, the segmentation will be.

Designing imaging enclosures for 3D imaging is hard because 3D objects cast
shadows, different parts are at different distances and angles to different lights
(which affects their appearance from different viewpoints), and because multiple
overlapping images from different viewpoints are required to give a complete 3D
reconstruction.

Canopies are often used by agricultural robots to shade direct sunlight, or
to completely control illumination [20, 18]. For outdoor applications where it is
hard to control lighting, many robots operate only at night, to avoid interference
from sunlight, and where active illumination ensures that only subjects close to
the light source are illuminated [15, 21, 8].

The pruner robot’s canopy consists of a rigid MayTec2 aluminium frame with
sheet aluminium cladding. Sunlight is excluded with brushes. The inside is lined
with corflute corrugated plastic, then covered with photo studio non-reflective
chroma-key blue backdrop paper3. The background provides a seamless matte
blue background behind the vines. The problem with this design is that the
background is not sufficiently rigid: sagging causes dark shadows which are de-
tected as vines (especially if background subtraction-based methods are used for
segmentation), and wrinkles in the cardboard have similar scale and appearance
to wires. These artefacts increase the number of incorrectly detected vines, and
increase the levels of robustness required throughout the computer vision soft-
ware. In addition, the background is fragile and prone to damage, rendering the
entire system is unusable. A more robust design would use a rigid backing.

2 http://www.maytec.org/
3 http://savageuniversal.com/products/seamless-paper/

studio-blue-seamless-paper
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The first pruner robot did not use brushes, and was unusable during daylight,
as sunlight shone on both the vines and background. The current design can be
used in all weather, however small shafts of sunlight get through gaps in the
brushes (Figure 7). These saturated regions are detected and masked out before
foreground/background segmentation.

The first DIET machine used a shiny black perspex background. The seg-
mentation was unreliable, as the measured colour of specular reflections off the
background was often the same as the breast, because the boundary between
the machine and breast was in shadow, and because seams close to the breast
edge were detected instead of the breast edge. The current machine uses a matte
black perspex background and adds a marker to the actuator (a black and white
circle). Together with lighting improvements, (Section 4.3) this makes the seg-
mentation far simpler and more reliable (Figure 6).

4.2 Camera positioning and lens selection

Lenses should be selected and cameras should be positioned so that enough of
the subject is visible, and so that stereo baselines are sufficient to achieve the
required accuracy. This can be a challenging trade-off, as longer baselines give
greater accuracy only if feature matching and localisation errors do not also
increase (e.g. because of appearance changes).

To design the pruner robot, we built a software model of the canopy, and
tested lenses and camera positions within this model so that the entire height
of the vine was visible, from the highest canes down to the middle of the trunk,
with the blue background behind the vines. Vine dimensions were provided by
vineyard managers. Unfortunately vines are often lower than the system was
designed for, and some rows cannot be modelled because the vine’s head regions
are outside the camera’s field of view. Moving cameras is not simple, because
positions are restricted by the frame, lenses and background position. Even when
the vines can be modelled, reconstruction is more likely to fail for important low
canes that are only partially visible. This introduces structural errors into the
reconstruction, and affects pruning decisions. The next iteration of the pruner
robot will be designed based on field measurements.

The first DIET machine also missed data because of poor camera positioning—
data from one-in-three patients from an early clinical trial were unusable because
the breast was partly outside the camera’s field of view.

4.3 Lighting design

Lighting must be setup so that scenes are evenly illuminated, so that objects’
appearances do not change depending on their position [12]. This is challenging
when imaging 3D scenes where the camera’s field of view or depth of field are
large, where shadows and occlusions are common, or where object’s are shiny
and show specular reflections—these make the same object appear differently in
different cameras, and may saturate the sensor. Even when objects are pure Lam-
bertian reflectors (their colour appears the same from any viewpoint), obtaining
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even illumination is challenging, because light intensity drops quadratically with
distance from the light source, and because many light sources’ (including “wide
angle” machine vision lights) intensities drop as the angle from the light’s centre
increases. [4] used a computer model of the pruner robot and the DIET machine
to design more effective lighting configurations, which give more even lighting
throughout the scene. For the pruner robot, the optimal configuration of 14 light
sources provides illumination levels that vary by 48% across the vines, whereas
a simpler configuration (a regular grid) give 70% variation, and a single point
source gives 96% variation. The most effective configurations position lights in
a 2m wide ring around the cameras. Having more light sources provides more
robustness to shadows, and positioning most light sources further away from
cameras mitigates the effect of light intensity decreasing with depth.

For the DIET machine, the optimal configuration of five light sources is a
large circle just above the cameras. The existing machine was modified to obtain
this configuration: lighting variation between the top and bottom of the breast
fell from 40% to 30% when 5 of 30 LEDs were masked out.

4.4 Light sources

Machine vision lights and strobes are widely available, however current commer-
cial solutions don’t have the wide-angle and high intensity that the pruner robot
and DIET machine require [4]. It is straightforward to build suitable lights from
high-power wide angle (or “unlensed”) LEDs, heat sinks, and commercially-
available “constant current” LED power supplies, however obtaining constant
light levels is challenging, due to artefacts remaining from the mains AC power
input [12], and because power supplies modulate the voltage to keep the current
constant while the LED’s resistance changes with temperature. On the pruner
robot, an additional capacitor on each power supply smooths out high frequency
flickering4. On the DIET machine, the amount of light is not proportional to the
strobe duration, and varies with the LED’s temperature. Updates to the strobe
duration are damped to prevent large lighting fluctuations.

4.5 Camera data acquisition

Camera manufacturers provide APIs and example programs for grabbing im-
ages from cameras onto a PC, and these example programs are easy to adapt
for particular applications. The challenges in data acquisition are synchronising
cameras and getting large amounts of image data onto the computer and saved to
disk. Camera APIs also provide control of colour balance, shutter time, etc. (see
supplementary material5 for a summary of trade-offs required). Auto-exposure
and auto white balance cause image changes that make registering views more
challenging. The pruner robot has controlled lighting, so these settings can be

4 http://www.red.com/learn/red-101/flicker-free-video-tutorial
5 Also available from http://hilandtom.com/PSIVT2015-Checklist.pdf.
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fixed. The DIET machine also fixes these settings, but controls brightness and
saturation by changing the strobe duration.

When imaging moving objects, cameras are usually triggered simultaneously
so that images are captured at the same moment. Images may also need to
be synchronised with strobes, or other events. The most common synchronisa-
tion method is to use the camera’s external trigger input. Alternatively, several
Firewire (1394a/b) cameras using the same card, or multiple cards6, can be
synchronised in software. External triggering is used by commercially-available
multi-camera systems7. The synchronisation methods used in the pruner robot
and DIET machine are summarised in Figure 3. Note that modern computer
hardware allows uncompressed or losslessly-compressed high resolution (1.3 mega-
pixel) images from three cameras to be saved to disk at over 30 frames per second,
without the need for specialised hardware or video capture cards. Although the
pruner robot’s computer vision system only requires 2.5 frames per second, the
high framerates provide data that is useful for evaluating the effects of different
robot speeds [5].

Pruner robot

3 x Point Grey 
Grasshopper2 14S5C-C

3 x 1280x960 Bayer 
images at 30 FPS

PNG compression
110MB/s over 
Firewire 1394b

Desktop PC with 
six-core Intel i7 

2.93GHz processor

55MB/s → SSD

DIET machine

5 x IDS UI-3250CP Bitmap images → SSD96MB in 3.1s (31MB/s) over USB3

5 cameras x 1600x1200 greyscale 
images x 10 timesteps

100mm

Intel NUC mini PC with 
two-core 2.6GHz i5

x 10

Fig. 3. Examples of image acquisition hardware setups. Modern USB3 and 1394b cam-
eras allow high data-rate uncompressed imaging without specialised hardware (i.e. cap-
ture cards).

6 https://www.ptgrey.com/KB/10574
7 e.g. http://www.4dviews.com/
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Fig. 4. The DIET machine’s GUI for setting camera focus. The wire ball has sharp
edges at a range of depths. The focus and aperture are set to maximise the sum of
squared differences between neighbouring pixels.

4.6 Lens focus

Important properties of machine vision lenses are their focal length, or zoom
(which is usually fixed), and their aperture and focus (which are either fixed,
have manual control, or can be controlled automatically). The aperture controls
how much light the sensor receives, and the focus setting controls the range
of depths for which the image is in focus, for a given aperture. The wider the
aperture, the more light is received, but the narrower the range of depths for
which the subject is in focus. Setting up lenses so that objects are in focus
wherever they appear is challenging: if one part of the scene is in focus, others
might not be, and manually inspecting an entire high-resolution image for focus
is hard (inspecting edges to verify they aren’t blurred requires zooming-in). A
slight loss of focus might be acceptable for some applications (although spatially-
varying focus is generally undesirable) as many computer vision methods, e.g.
optical flow, invariant features, use Gaussian blurring to reduce the effects of
noise and quantisation.

Contrast detection autofocus [14] is commonly used in consumer cameras.
The camera scans across a range of focus settings, and selects the setting that
maximises a measure of focus. The effect of a lens being out of focus is to blur the
image, and hence an image that is out of focus has smaller differences between
neighbouring pixels. For a fixed aperture, a simple and effective [14] measurement
of focus is the sum of squared differences between neighbouring pixels. If this
focus measure is displayed as a camera captures images, the lens’s focus can be
adjusted until this measure is maximised (Figure 4).

The challenge in using fixed-focus cameras for 3D machine vision is that the
range for which they are in focus must include the full range of depths where
the object might be visible, across the entire image. A sum-of-squared-differences
focus measure is only valid for a fixed scene, so this scene should contain textured
objects at a suitable range of depths, across the entire image.
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The pruner robot’s cameras were setup by imaging vines (which have many
sharp edges at the required range of depths), using both a GUI that automati-
cally measures focus, and manual inspection of the images. There are still regions
of the images which are not well focussed throughout the required depth range,
and the wire detector performs poorly in these regions, impacting the complete-
ness of the 3D reconstruction of the scene.

The first DIET machine was focussed manually. Images from an early clinical
trial are out of focus in places, which probably impacts the accuracy of skin mo-
tion tracking. The current DIET machine uses a GUI to automatically measures
focus. The focus is set while imaging a wire ball (Figure 4), because the wire
ball has sharp edges at the entire range of depths where the breast surface could
be. The optimal parametrisation for optical flow estimation has a larger kernel
size (blur size) for computing derivatives for the current machine than the old
machine, because images are now sharper.

Autofocus cannot generally be used for 3D computer vision because changing
the focus may change the camera calibration. Objects move around the image
when the focus on the lenses on the pruner robot is adjusted (10MP, 2

3

′′
, 5mm

Goyo C-mount lenses).

4.7 Camera calibration

Camera calibration is the process of finding a transform (a camera matrix, and
possibly distortion parameters) that maps the position of objects in the world
to their coordinates in the image. Zhang’s [24] widely-used method for camera
calibration involves imaging a calibration target of known dimensions (often
a checkerboard pattern), locating the calibration target in each image, then
optimising calibration parameters and estimated target positions to minimise
the image distance between projected and measured target positions (e.g. using
Levenberg-Marquardt optimisation). The calibration models the effects of the
lens and sensor size (intrinsic parameters), and the position and orientation of
each camera (extrinsic parameters).

OpenCV [16] has routines for detecting calibration targets, and for calibrat-
ing pairs of stereo cameras. Both the pruner robot and the DIET machine use
OpenCV’s target detection routines, then use Zhang’s method to estimate the
intrinsic and extrinsic parameters for all of the cameras jointly, avoiding any loss
of accuracy from combining multiple pairwise calibrations.

OpenCV’s calibration pattern detector is most reliable when calibration tar-
gets have a large white border8. A problem with checkerboard and dot-pattern
targets is that their orientation is ambiguous—the target can be detected in dif-
ferent orientations (180 degrees out) in images from two cameras. If undetected,
this will cause the calibration to fail. Either marking the calibration target (e.g.
adding a coloured mark to one corner, which can be detected and used to re-
solve the ambiguity), or using a non-symmetric pattern (e.g. [17]) prevents this

8 http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_

reconstruction.html
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Fig. 5. Effect of the number of targets detected in both images of a stereo pair on the
accuracy of reconstructed 3D points. Box plots show the range, quartiles, and median
errors, from 15 calibrations for each number of targets. The scene is 2m wide, with a
depth of field of 0.5m to 1.75m.

problem. Some printers scale the width and height of a target differently; this is
another potential point-of-failure to check.

Capturing calibration target images in a range of poses throughout the region
where objects are imaged is important for obtaining accurate calibrations [17].
Robot Operating System (ROS) has guidelines for capturing target images for
stereo calibration9. Figure 5 shows the effect of the number of target images
on the accuracy of the calibration of one pair of cameras on the pruner robot.
For ground truth, we assume that a calibration with 802 targets detected in
both images is accurate (so the error estimates are actually lower bounds). We
then estimated calibrations from randomly-selected subsets of the detected tar-
gets. The accuracy of the subset calibrations is measured by sampling 3D points
throughout the region of interest, projecting to 2D using the accurate calibra-
tion, reconstructing with the subset calibration, and comparing to the original
3D points. Higher accuracy is obtained when more images are used: capturing
less than fifty images gives average errors of more than 1cm in the 3D reconstruc-
tion due to calibration alone. The ROS guidelines, and [17], note that common
practice is to capture dozens of target images, to give a suitable distribution of
pattern positions for every pair of cameras. For multi-camera systems, we rec-
ommend capturing up-to a thousand images of a pattern, so that hundreds of
targets are detected for every pair of cameras. In our experiment, 1352 stereo
images of the target were captured, and the target was detected in both images
802 times. For the DIET machine, over 600 images are needed to ensure there
are at least 40 detections for every pair of cameras. Capturing this many images
is an inexpensive way of reducing the errors in the 3D reconstruction.

Obtaining an accurate camera calibration is challenging. [17] write that “Re-
liable and accurate camera calibration usually requires an expert intuition to
reliably constrain all of the parameters in the camera model”, and conduct hu-
man trials to show that accurate calibrations are rarely obtained by novices.
They propose using a software tool to guide users through the calibration pro-

9 http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
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Shadow edges 
make segmentation 
challenging

Background and  
breast are the same 
colour (specular 
reflections)

Saturation (data 
loss)

Poor focus in places

JPEG compression 
artefacts

No accurate 
calibration

Clear edge at 
breast boundary

Uniform near-black 
background

Even lighting 
across breast

Lighting adjusted online 
to reduce saturation

Actuator with marker for 
easy segmentation

Good focus everywhere

No lossy compression

Accurate calibrationFirst DIET machine                                                                                      Current DIET machineFirst DIET machine                                                                                      Current DIET machine

Fig. 6. Hardware changes have improved several different aspects of the DIET machine,
so that the images can now be used to track skin texture rather than requiring markers.

cess for a single camera. Much early research on the DIET project was on camera
calibration with various calibration objects ([7], Chapters 4 and 5), however the
methods were ill-conditioned (often using only two faces of a single object), and
an accurate calibration was rarely obtained [6]. We recommend capturing images
of standard calibration targets whenever data is collected, both to validate that
the calibration is unchanged, and so that cameras can be calibrated retrospec-
tively if necessary.

For multi-camera systems for 3D reconstruction, an extra consideration is
the choice of the origin. Often one camera is chosen to be at the origin (e.g. in
OpenCV’s routines), but it may be more appropriate to choose an origin which
aligns the 3D model with the machine. The pruner robot selects the origin so
that the volume in which the vines move is an axis-aligned box. This simplifies
the application of constraints on the 3D reconstruction, which come from the
physical dimensions of the machine, and means that if one camera moves and
loses calibration, other calibrations (the robot arm position, and a laser line
structured light scanner) do not change. The DIET machine’s origin is in the
machine’s centre, and is aligned with the patient, so that tumour positions can
be matched between the patient and the 3D model.

4.8 Camera mounting

Calibrating cameras is time consuming, and undetected calibration changes are
a potential source of error. It is important to attach cameras securely so that
the calibration does not change. Most machine vision cameras are mounted with
either a single 1

4

′′
tripod screw, or four small bolts. The tripod mount screws

are prone to loosening if cameras are knocked, and are easy to over-tighten,
so we recommend using the four small bolts. The pruner robot has a metal
guard protruding beyond the lens (Figure 1) to prevent people or vines from
accidentally knocking the lenses.
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Partly-visible canes → 
increased matching 
ambiguities

Poor focus in places

Cane-like artefacts 
on background

5x lighting variation

Challenging segmen-
tation away from blue 
background

Only useable at night
First pruner robot                                                                                             Current pruner robot

More completely-
visibile canes

Fewer artefacts on 
background

Good focus almost 
everywhere

2.5x lighting 
variation

Minor effects from 
sun, easy to model

Improved 
background 

positioning

Fig. 7. Hardware changes have improved several different aspects of the vine images
from the first pruner robot to the current system.

5 Conclusion

Designing camera systems for 3D computer vision is challenging because of the
many factors affecting image quality. Carefully designed hardware systems result
in simpler and more robust computer vision systems, and shorter development
times. In two case studies, two different teams of engineers made similar mis-
takes when setting up multi-camera systems for 3D reconstruction, and these
mistakes have unnecessarily delayed both projects. In this paper we have listed
and analysed many of the design considerations that must be taken into account
when designing multi-camera systems, so that future projects don’t make the
same mistakes. These recommendations are summarised in a checklist and a list
of trade-offs, which is provided as supplementary material10.
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