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Correcting Scale Drift by Object Recognition in

Single Camera SLAM
Tom Botterill, Steven Mills, and Richard Green

Abstract—This paper proposes a novel solution to the problem
of scale drift in single camera SLAM, based on recognising
and measuring objects. When reconstructing the trajectory of
a camera moving in an unknown environment, the scale of
the environment, and equivalently the speed of the camera, is
obtained by accumulating relative scale estimates over sequences
of frames. This leads to scale drift: errors in scale accumulate
over time. The proposed solution is to learn the classes of
objects which appear throughout the environment, then to use
measurements of the size of these objects to improve the scale
estimate. A Bag-of-Words-based scheme to learn object classes,
to recognise object instances, and to use these observations to
correct scale drift is described, and is demonstrated reducing
accumulated errors by 64% while navigating for 2.5km through
a dynamic outdoor environment.

I. INTRODUCTION

S
IMULTANEOUS Localisation and Mapping, or

SLAM [1], enables a robot to position itself as it

explores a previously unknown environment. The robot uses

its sensors to map its environment, while simultaneously

localising itself in this map. Errors which accumulate in

the robot’s position estimate as it explores are corrected

when previously mapped areas are re-visited (known as ‘loop

closure’), allowing accurate long-term positioning.

One sensor often used for SLAM is a single camera:

cameras are inexpensive, passive, compact, and non platform-

specific, and many single-camera SLAM schemes have been

demonstrated positioning robots on trajectories of hundreds of

metres [2], [3], [4], [5]. A key strength of cameras is that

the information-rich images they capture can be used both

for measuring the robot’s incremental motion, by matching or

tracking features between frames, and for localising the robot

in the map, by recognising places which have been visited

previously. On a larger scale however, errors still accumulate

within large loops and in tracks without loop closure, and these

errors can severely distort global maps.

A significant source of error unique to single camera SLAM

is scale drift. A robot with a single camera can only resolve

the scale of the world, and hence its speed, by identifying

objects of known size, such as the calibration objects used

to initialise some single camera SLAM schemes [6], [7], or

previously mapped landmarks. As the robot explores away

from previously mapped areas, small errors in the robot’s scale

estimate accumulate, eventually rendering position estimates

useless. Even when a loop is closed and the map is optimised,
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substantial uncorrected errors in scale can remain, due to the

trade-off between adjusting rotations, translations, and scales

in order to reduce some global error function, therefore it is

worthwhile to minimise this scale drift where possible [8].

This paper describes a new algorithm, SCORE2 (Scale Cor-

rection by Object Recognition), which addresses the problem

of scale drift in a novel way: the robot first learns classes of

objects which are present in its environment, then estimates the

distribution of sizes of objects in each class. Later observations

and measurements of these objects are used to correct scale

drift. SCORE2 is based on earlier work on learning and

measuring the objects present in a robot’s environment [9],

although in this earlier work scale drift was not corrected

successfully.

This paper is organised as follows: the following section

describes previous uses of Object Recognition (OR) for robot

positioning, and gives a brief overview of leading techniques

for real-time OR. Section III describes the Bag-of-Words

(BoW) algorithm and BoWSLAM single camera SLAM

scheme with which SCORE2 is integrated. Section IV analyses

the problem in detail, and describes the SCORE2 algorithm.

Section V demonstrates SCORE2 successfully reducing scale

drift in single camera SLAM, and the final sections discuss

our conclusions and planned future developments.

II. BACKGROUND

In this paper we propose to integrate object measurements

into a SLAM framework in order to correct scale drift. This

work builds on a large body of prior research into the applica-

tions for Object Recognition (OR) for mobile robots, reviewed

in Section II-B; and methods for OR, which are reviewed

in Section II-C. Firstly, we examine alternative methods for

reducing scale drift.

A. Scale drift correction in SLAM

Many Visual SLAM systems do not suffer scale drift

because they incorporate measurements from other sensors.

Sensors including IMUs (Inertial Measurement Units; [10],

[11]), wheel encoders, depth cameras [12], or additional

cameras, provide complementary measurements which can be

used to estimate the true scale of the world. As the amount of

extra information needed to resolve scale drift is small, even

measurements of barometric pressure [13], or approximate

depths inferred by depth-from-defocus [14] can be used to

correct scale drift.

Alternatively, in some situations, properties of the envi-

ronment can be used to correct scale drift. For a single

camera attached to a wheeled vehicle, such as a car or
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bicycle, the distance of the camera above the ground plane

is approximately constant, so the scale of the world can be

measured by identifying points on the ground plane. This

assumption is used to eliminate scale drift in the single camera

SLAM schemes by Scaramuzza et al. [15] and Kitt et al. [16].

For SLAM using a helmet camera, the periodic motion of

the camera, corresponding to the wearer’s strides, can be

used to estimate the camera’s speed and hence correct scale

drift [17]. In earlier work [18], the authors used an assump-

tion that reconstructed 3D points in the world have depths

from a particular distribution, which allows scale drift to be

eliminated. The assumption improves the accuracy of maps,

despite distortions where it does not hold. Such assumptions

are not always true however, and alternative sensors are not

always available. In this paper, we propose a scheme which

can eliminate scale drift without making such assumptions,

and without any additional sensors.

B. Object recognition for mobile robots

Autonomous mobile robots generally need the ability to

recognise objects so that they can perceive and interact with

their world. Often this is limited to identifying a particular

object in order to perform a specific task, however many robots

are equipped with more general purpose object recognition

capabilities, and incorporate observations of objects into their

internal world map [19], [20], [21], [22]. This section reviews

some of these schemes, with focus on those which use OR to

improve robot positioning or localisation.

Anati et al. [23] developed a robot which can localise itself

by recognising objects as it explores a train station. A human

marks objects (bins, clocks, ticket machines) on a simple

map of the station. As the robot explores, it recognises these

objects. A particle filter fuses object observations, and ob-

servation uncertainties, with position hypotheses. The correct

position is resolved after multiple object observations.

A challenge facing many SLAM systems is that of data as-

sociation. Data association is the process of matching measure-

ments from the robot’s sensors to landmarks in a map, however

this can be challenging when multiple landmarks have similar

appearance. Incorrectly matching measurements to landmarks

can corrupt the state of the robot’s map, and cause positioning

to fail. Objects detected when multiple features are present in

a scene make ideal landmarks for SLAM, as the feature com-

binations are more distinctive than features alone. OR is used

to improve the performance of visual SLAM by Ahn et al. [24]

and Castle et al. [25]. These schemes both recognise planar

objects (from a database of posters and photographs) and use

them as robust landmarks for stereo and monocular Extended

Kalman Filter (EKF) based SLAM respectively. Castle et

al. extended their scheme to incorporate the known size of

particular objects into the SLAM solution [26]. Further work

by Castle and Murray [27] incorporates similar planar objects

into a modern PTAM-based SLAM scheme (Parallel Tracking

and Mapping; where the scene and trajectory are reconstructed

by bundle-adjustment-like optimisation over recent frames).

Objects are localised accurately with respect to the camera,

enabling Augmented Reality annotations to be added to the

objects. Civera et al. [28] also extend an EKF-SLAM scheme

to incorporate 3D models of objects. The robot can download

details of objects which are likely to occur in a particular

environment as needed. When these objects are observed, they

are reconstructed from multiple views, then are incorporated

into the robot’s SLAM map.

Objects are also valuable as sources of additional informa-

tion for more general 3D reconstruction tasks: Bao et al. [29]

incorporate the structure of instances of known objects into a

3D reconstruction of the scene. Optimising object and camera

poses jointly gives more accurate results than a reconstruction

based on 3D points alone.

The SLAM system by Decrouez et al. [30] detects objects

present in the environment in order to mitigate a different

problem faced in Single Camera SLAM: the problem that

mapped objects which later move can corrupt the internal

SLAM map and cause positioning failure. Moving objects

are detected by identifying groups of landmarks which have

moved with respect to other landmarks in the SLAM map

since they were first mapped. The SLAM map includes both

static landmarks, and landmarks on objects which may move

(e.g. on a book or mouse on a desk). Hsiao et al. [31] identify

individual SLAM landmarks which move with respect to the

world. These objects’ motion is modelled in an EKF-SLAM

framework.

Alternatively, the positions of landmarks in the SLAM map

can be used to help segment the robot’s environment into

objects. Angeli and Davison [32] detect individual objects by

clustering landmarks based on their location and appearance

(so nearby and similar-looking landmarks are assumed to fall

on the same object). The system partitions the SLAM map

into a set of distinct objects, including books, a clock and a

keyboard.

The systems reviewed in this section have demonstrated the

many uses of OR for mobile robots, which include augmenting

the capabilities of SLAM systems. Detected objects are shown

to make effective SLAM landmarks, can be used to categorise

the location being mapped, and single camera SLAM schemes

which identify moving objects can avoid positioning failures in

dynamic environments. A limitation of many of these previous

schemes is that only a small number of known objects from a

pre-defined database are recognised, so these schemes are only

useful when the environment is likely to contain those partic-

ular objects. Ideally, SLAM schemes should enable robots to

explore environments about which they have little or no prior

knowledge. In this paper we propose that OR is used to address

a different problem faced by single camera SLAM, that of

scale drift. We also propose that the robot should be able to

operate with minimal prior knowledge of its environment, and

for this reason SCORE2 is designed to learn the classes of

objects which are present in the environment being explored.

Many proposed OR methods have the capability to learn the

classes of objects present in the environment. The following

section reviews contemporary OR methods, including those

which have this required capability.
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C. Real-time OR using computer vision, and the BoW model

With so many applications, OR has been an active area

of computer vision research for decades, and a wide range

of methods has been developed. Many of these methods are

based on descriptors of local image features, such as SIFT

(Scale Invariant Feature Transform; [33]) or SURF (Speeded-

Up Robust Features; [34]), or descriptors of colour [20]. These

descriptors allow the similarity in appearance of features in

two images to be measured. For recognising objects from a

small set of distinctive items, simple approaches based on

matching a descriptor observed in an image with descriptors

from training images are often sufficient [23], [19], [35].

For more general-purpose OR, for example to recognise in-

stances of objects from a class, or to recognise objects against

background clutter, these simple approaches are unsuitable, as

single descriptors are not sufficiently distinctive. Objects are

detected more reliably when each is represented by a set of

features instead [28], [27], [24], however searching images

for many different combinations of features can be computa-

tionally expensive. Approaches based on the Bag-of-Words

(BoW) model address these limitations, and enable object

instances from large databases to be identified effectively and

efficiently [36], [37], [38].

The BoW model is an efficient representation of the set

of feature descriptors an image contains, which works by

quantising each descriptor to the most similar-looking from a

set of ‘image words’. Image words are a set of representative

descriptors chosen by clustering a training set of descriptors,

with each cluster centre corresponding to one image word.

When the BoW model is used for OR, an object, or object

class, is represented by a set of co-occurring image words.

Testing whether the BoW representation of an image contains

a particular set of image words associated with an object is

very fast, allowing large image databases to be searched for

large numbers of objects. A strength of the BoW model is that

the large numbers of image words used enables reliable object

detection even in the presence of background clutter, and when

occlusion and variations in object pose cause varying sets of

features on the object to be detected.

BoW-based OR has often been deployed on mobile robots,

for example by Ramisa et al. [39], who use a BoW model

to recognise instances of various household objects observed

while a robot explores; and Jebari et al. [40], who use

SURF descriptors plus colour histograms in a BoW model

to recognise multiple instances of objects in scenes observed

by a robot.

BoW-based OR is also widely used for the related problem

of identifying when two images show the same place, by

identifying those with a large number of descriptors in com-

mon [41], [42], [43]. This makes BoW-based OR particularly

well suited for autonomous mobile robots as many already

maintain BoW databases in order to detect loop closure for

SLAM [4], [44], [45], [46], or for localisation in a previously-

mapped environment [47].

Most OR schemes use a supervised learning procedure to

train a classifier on labelled training images of the objects to be

recognised. Classifiers such as Support Vector Machines [48]

or Random Forests [21] can be applied to the BoW word

frequency vectors to identify whether an object occurs in an

image. These classifiers work because they identify the set of

image words which co-occur when that object is present.

For some applications, for example when a robot is explor-

ing an environment about which there is little prior knowledge,

it is useful to be able to identify the objects which are present

without prior training data. When images are represented with

the BoW model, object classes can be learned automatically

by finding sets of image words which co-occur, for example

by finding principal components of a matrix of the BoW word

frequency vectors. These approaches include Latent Semantic

Analysis (LSA [49]), and its variants, Probabilistic LSA [50]

and Latent Dirichlet Analysis [37], [51]. Similarly, groups

of images showing the same object classes can be found by

clustering the BoW word frequency vectors representing each

image: Zhang et al. [52] apply an Expectation-Maximisation-

based clustering framework to a automatically selected subset

of features from the word frequency vectors. Each cluster

corresponds to a different object class, and unlabelled query

images are given the same annotations as training images in

the same cluster. The feature combinations found by these

approaches often correspond to different parts of an object,

but also include features which tend to co-occur with the

object, e.g. features associated with ‘cars’ might include the

cars’ shadows on the road. For this reason, the phrase ‘BoW

object’ is used in this paper for these sets of co-occurring

image words.

Many other schemes for OR have been developed for the

case when training data is available. Brown and Lowe [53]

match the 3D structure of objects from a training set to images;

Serre et al. [54] use descriptors of texture computed from

training images; and Grauman and Darrell [55] learn spatial

relationships between image features. Rothganger et al. use a

hybrid approach to improve the accuracy of recognition [56].

Hoover et al. [57] decompose simulated images of objects into

frequency components, then perform an approximate principal

component analysis on these frequency components. Each

object’s corresponding principal components form a concise

description of that object, which can then be used for object

classification. These approaches are often highly accurate but

either are often not fast enough for real-time OR, or cannot

identify objects amongst background clutter.

A recent innovation which has been successfully applied in

OR competitions, such as the PASCAL Visual Object Class

challenges [58], is to compute large descriptors describing

edge orientations in images of object from each class. Edge

orientations throughout each image are computed, and for each

object class, a classifier (e.g. a Support Vector Machine) is

trained on images of objects from that class. To detect objects,

images are searched systematically for regions where the edge

responses are classified as that object class. These descriptors

include the Histogram of Oriented Gradient descriptor [59],

and the Enhanced Biologically Inspired Model descriptor [60].

Of course OR is not limited to using 2D images alone—when

available, other sensors such as depth cameras can also be

used [61], [21].

In summary, for integrating OR with Single Camera SLAM,
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BoW-based methods are ideal, as they can identify object class

instances in single images, and in the presence of background

clutter; they can be computationally efficient; they integrate

easily with the BoW databases already maintained for loop

closure detection; and they enable the objects present in to be

learned automatically.

III. BOWSLAM AND THE BOW MODEL

This section provides an overview of BoWSLAM, the single

camera SLAM scheme with which SCORE2 is integrated.

SCORE2 is designed to integrate with BoWSLAM, however

other single camera SLAM schemes also maintain BoW

databases for loop closure detection, e.g. [4]. SCORE2 could

easily be adapted to work with any such schemes.

BoWSLAM is designed to demonstrate that robust and large

scale single camera SLAM is possible while making minimal

assumptions about the motion of the camera or contents of the

environment. Previous work by the authors [18], [62] describes

the development of BoWSLAM in detail, and demonstrates

that BoWSLAM can map long trajectories through visually

challenging environments which contain many moving objects,

featureless regions, and erratic motion. An important feature

of BoWSLAM is that a high-level BoW representation is built

for every frame, and these BoW representations are used for

both loop closure detection, and for finding feature matches

between pairs of frames, from which the camera’s incremental

motion is computed.

In most BoW schemes, the dictionary of image words

is built offline from training data, however SLAM is most

useful in environments of which the robot has limited prior

knowledge, in which case appropriate training data may

be unavailable. Some BoW schemes address this problem

by building dictionaries online from the descriptors which

have actually been observed, hence choosing image words

appropriate for describing whatever environment the robot is

exploring; these include the schemes by Angeli et al. [63]

and Eade and Drummond [4], and this is also the approach

taken by BoWSLAM. In BoWSLAM, a hierarchical dictionary

is built by recursively clustering small random subsets of

the descriptors which have been observed, using k-medoids

clustering, as described in [64]. Every time the number of

descriptors increases by some fraction (e.g. 25%), a new

dictionary is built in a separate thread, which takes typically

a few seconds. This scheme is relatively simple, but is shown

to have lower complexity than other schemes for building

dictionaries online, and can scale to large environments [62,

Chapter 5].

The descriptors used by BoWSLAM in this paper are simple

11× 11 image patches centred on FAST corner features (Fea-

tures from Accelerated Segment Test; [65]), which are com-

pared by the sum-of-squared difference between pixel values.

Other feature detectors and descriptors can be used, however

this combination provides consistently good performance for

both location recognition and for estimating relative poses.

BoWSLAM is based on the pose graph model of SLAM,

where the robot’s trajectory is represented as a graph of relative

pose estimates, and observed landmarks are reconstructed

relative to nodes in this graph. Relative pose estimates, and

their uncertainty, are computed by 5-point Random Sample

Consensus (RANSAC; [66]) and two-frame nonlinear refine-

ment (two-frame bundle adjustment) [67], and relative scale

is computed by a robustified least-squares alignment between

sets of reconstructed 3D points.

BoWSLAM models relative scale estimates as lognormally-

distributed random variables. A variable is lognormally dis-

tributed if its log is normally distributed (conventionally,

natural logarithms are used). As well as being a good fit

to observations, the lognormal distribution has the useful

property that the product of lognormally distributed variables

is lognormal, i.e. the relative scale estimate computed from

a sequence of relative pose estimates is lognormal. Around

a loop in the pose graph, relative scale estimates should

accumulate to zero, and this constraint is used to correct scale

drift when loop closure occurs. Within large loops, and when

positioning away from previously mapped areas, it is errors

in these relative scale estimates which accumulate and cause

scale drift.

To compute a globally accurate map, a minimal spanning

subgraph of relative poses which is unlikely to contain errors is

first selected. Scale estimates are optimised around cycles in

the subgraph, then the subgraph is refined using the TORO

‘Tree-based netwORk Optimizer’ framework by Grisetti et

al. [68]. TORO optimises the orientation and position esti-

mates separately, and performs well at producing accurate

maps, although a more modern refinement algorithm such as

g2o (‘a General framework for Graph Optimisation’; [69]) or

iSAM2 (‘incremental Smoothing and Mapping’; [70]), which

jointly optimise rotations and translations (and scale estimates

in the case of g2o), would improve BoWSLAM’s accuracy.

Other single camera SLAM and odometry schemes which

model relative scale estimates use different approaches which

could potentially be more accurate. Strasdat et al. [5] jointly

optimise relative pose and scale estimates to reduce scale drift,

however substantial (three-fold) scale drift still accumulates

before a 200m loop is closed. Esteban et al. [71] propose an

alternative least-squares method for estimating relative scales

by aligning 2D image features to 3D structure. The method is

employed in a Visual Odometry scheme which shows very low

levels of scale drift (0.5%) around a small loop. Regardless of

how accurate relative scale estimates are however, scale drift

will inevitably still accumulate over longer tracks.

IV. SCALE CORRECTION BY OBJECT RECOGNITION

This section describes SCORE2, our new scheme to learn

classes of BoW objects, to measure instances of these BoW

objects, to estimate the distribution of sizes of each class of

BoW objects, and to use later object size measurements to cor-

rect accumulated errors in scale. This section is organised as

follows: firstly, Section IV-A analyses the problem of correct-

ing scale drift from BoW object observations. Secondly, Sec-

tion IV-B gives an overview of the proposed solution. Thirdly,

Section IV-C describes how BoW objects are measured and

how BoW object classes are learnt. Fourthly, Section IV-D

describes how these uncertain object size measurements are
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TABLE I
SELECTED NOTATION USED IN THIS PAPER. NATURAL LOGS (loge) ARE USED THROUGHOUT.

B Number of BoW object classes
w1, w2 Two co-occurring words defining a BoW object
M Term-document matrix, with elements mij

mij The number of times word j occurred in image i, weighted by TF-IDF
λb Measurement of BoW object b (distance between features defining b), assuming baseline 1
γb Underlying measurement of BoW object b if scale was known
rb, ub Scaled and logged measurement of a BoW object, with variance from uncertainty in scale
µb, σb Parameters of the lognormal distn. of sizes of BoW objects in class b
{(rbi, ubi), i = 1, ...,N} N measurements of BoW object b
DSLAM , G2

SLAM Parameters of a scale estimate from SLAM; s ∼ Log-N (DSLAM , G2

SLAM )
DOR, G2

OR Parameters of a scale estimate from SCORE2; s ∼ Log-N (DOR, G2

OR)
Dcombined, G

2

combined
Parameters of combined scale estimate; s ∼ Log-N (Dcombined, G

2

combined
)

Mi, 1/t
2

i Parameters of conjugate distn. for µ; µ ∼ N (Mi, 1/t
2

i ) after i observations

αi, βi Parameters of conjugate distn. for τ = 1/σ2

b
; τ ∼ Γ(αi, βi) after i observations

(a) A robot observes objects as it explores. Later, substantial
scale drift accumulates. A subsequent object observation
is perceived to have a different size (highlighted).

(b) The assumption that the size of the observed objects
come from the same distribution allows scale drift in
the highlighted relative poses to be corrected.

Fig. 1. Figure showing how SCORE2 corrects scale drift. (a) As the robot explores it observes and measures objects. Later, scale drift degrades its position
estimate. (b) A subsequent observation of the object allows scale drift to be corrected.

used to parameterise a size distribution for each class. Finally,

Section IV-E describes how measurements of BoW objects

from these classes are used to correct accumulated errors in

scale.

A. Analysis of scale correction problem

A robot identifies classes of objects as it explores an

unknown environment. The distribution of sizes in each class

is measured. As the robot travels into a previously unmapped

area, its estimate of scale drifts, and as a result its position

and speed estimates deteriorate. When the robot observes and

measures objects belonging to classes observed earlier, it can

use these measurements to improve its scale estimate. This

idea is illustrated in Figure 1.

A BoW object is measured by reconstructing features on the

object which are viewed from two frames, then measuring the

distance between the features. The major source of error in a

BoW object measurement is usually the error in the estimated

baseline between the pair of frames (which is equivalent to

the estimated speed of the robot). This source of error applies

equally to all objects measured in the same two frames. In

addition, as scales are accumulated sequentially, errors in

an estimated scale are correlated with errors in other scale

estimates from which this scale was calculated (or will be

used to calculate), and hence errors in all object measurements

made along a trajectory are correlated (Figure 2).

As with the SLAM problem, where correlations between

landmark positions and the robot pose should be modelled [1],

[8], modeling the correlations between object measurements

would be useful for estimating object class size distributions.

Maintaining these correlations would be challenging however.

Unlike SLAM measurements, which can be partitioned into

local submaps, the most suitable object classes for scale

drift reduction are those that are encountered throughout the

robot’s environment. Currently measurements are assumed

independent, to simplify the problem. This approximation is

most appropriate when scale drift is low, which is when the

most reliable measurements of objects (those contributing most

to their estimated size distribution) are made.

B. Overview of solution

The SCORE2 (Scale by Object Recognition) algorithm

is outlined in Figure 3, and is detailed in the following
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Fig. 2. An object observed at times t = i and t = j is measured by reconstructing features on it, then measuring the distances between these features.
The size of this measurement is proportional to the baseline length, sij . As baseline length estimates are correlated, different object measurements are also
correlated.

For each frame:

When re-training:

1) Identify (learn) the B BoW object classes

2) Measure each BoW object (subject to scale estimate from SLAM)

3) Estimate distribution parameters

4) For each edge combine the most likely scale given the observations with the measured scale

When a new edge (relative pose estimate) is added:

1) Observe any BoW objects reconstructed here

2) Update BoW object size distributions

3) Combine the scale estimated from the observations with the measured scale

Fig. 3. Overview of the SCORE2 algorithm

sections. In summary, when retraining occurs (when a new

BoW dictionary is created), a set of BoW object classes is

identified. The measured sizes of objects in these classes are

used to improve existing and new scale estimates.

The effect of SCORE2 is to propagate reliable scale es-

timates from better mapped areas to areas where the scale

is much less certain, but where the same BoW objects are

visible. In practice there is often a large difference between the

uncertainty in scale estimates in different areas, for example

scale estimates are accurate when the robot is moving in a

straight line in a feature-rich environment, then deteriorate

when the robot corners. SCORE2 is also able to initialise a

scale estimate when a new map component is started, after the

robot has become lost.

C. Classes of measurable objects

This section describes how SCORE2 defines a class of

objects, and how objects in that class are measured. Notation

used is summarised in Table I.

SCORE2 requires that BoW object classes can be learnt and

identified in real-time, and that identified BoW objects can be

measured. The object classes recognised in real-time by con-

temporary OR schemes (Section II-C) consist of occurrences

of one or more of a set of features defining that class. The

most obvious measure of an object in one of these classes is

the distance between two features on the object. Measurements

of more than two features are not considered, as this would

add to the complexity (there are
(

n
2

)

possible measurable

distances between n points), and would introduce difficulties

in coping with partially-observed and partially-reconstructed

BoW objects. As a result, SCORE2’s BoW objects are each

defined by the co-occurrence of two image words. Multiple

instances of the same BoW object are likely to be visible in

many scenes; however by assuming BoW objects are separated

by more than the separation of the features within them, only

the least separation between all possible pairs of two features

visible in a scene must be measured.

To identify co-occurring image words, the same term-

document matrix as LSA is used. This sparse matrix, M ,

has elements mij representing the number of times word

j occurred in image i. Columns are weighted by the Term

Frequency-Inverse Document Frequency (TF-IDF) score [41];

a heuristic measure of distinctiveness. Each row of this matrix,

ri, is the BoW representation of image i.
Contemporary LSA systems finds co-occurring features by

computing the principal components of the matrix M by

Singular Value Decomposition (SVD; [72]). M could realisti-

cally have 10,000 rows, 50,000 columns, and 5 million non-

zero entries however, making the computation challenging for

a real-time application. In addition, only co-occurring pairs

of features are of interest, rather than co-occurring sets of

features.

The principal component p of M is a unit vector maximis-

ing ‖M ′
p‖, where M ′ is given by subtracting the column’s

mean from each column of M . As co-occurring pairs of fea-

tures are required, vectors p2 with two equal nonzero elements

are found, which each correspond to one co-occurrence. For
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each co-occurrence of two words w1 and w2, we calculate the

sum:
∑

Images i containing w1,w2

m2

i w1
+m2

i w2
(1)

If co-occurring words only occurred in these pairs, then the

pair of words maximising ‖M ′
p2‖ would be the pair of words

for which this sum is greatest. The B pairs of words with the

highest value for Equation 1 are chosen as the B BoW object

classes. Only features that are successfully reconstructed are

used, which limits the number of co-occurrences that must be

considered, and avoids learning BoW objects which cannot

often be measured.

Equation 1 is a heuristic, as is LSA itself, however the

experiments in Section V show it to work reasonably well

at identifying pairs of features corresponding to real objects.

Many alternative schemes for choosing the word pairs could

be used, for example choosing the pairs of features with the

highest mutual information. The mutual information of two

words is a measure of the amount of information provided

about the occurrence or non-occurrence of one word, given

that the other has been observed, and the co-occurrences with

the highest mutual information are selected by [73] in order

to compute the probability that pairs of images show the same

scene. Computing mutual information in this scheme requires

heuristic estimates of word co-occurrence probability however.

Once a set of BoW object classes has been identified, the

instances of the corresponding BoW objects are identified (by

searching each of the sets of 3D points reconstructed between

pairs of frames) and measured.

D. Estimating object class size distribution parameters

This section describes how a distribution is fitted to the

noisy measurements of BoW object sizes. The distribution

incorporates both measurement error, and variability in BoW

object sizes within each class. There are five sources of

variability in the observed object sizes:

1) Uncertainty in the baseline length (scale) from which

objects are reconstructed.

2) Variation in true size of objects (e.g. cars are 1.5 to 2.5m

high).

3) The same two-word combination occurring in multiple

contexts.

4) Errors in reconstructing 3D point positions.

5) Errors from measurements of multiple partially-visible

objects, or features occurring in multiple objects.

The combination of these sources of variability is assumed

lognormal, as this fits observations well. The analysis in

[62, Chapter 9], shows that these size measurements are

considerably better approximated by a lognormal distribution

than a normal distribution. The lognormal assumption makes

integration with the lognormally-distributed scales estimated

by BoWSLAM simple, and is underpinned by evidence that

the lognormal distribution is very often a good model for size

measurements including the heights of plants or people, or the

length of words [74]. BoW object size measurements are also

assumed to be independent.

A BoW object b is observed in two frames, and is mea-

sured to have size λb when points are reconstructed with

baseline 1. The object’s true size, γb, is an unknown random

variable drawn from the underlying BoW object class size

distribution Log-N (µb, σ
2

b ), which includes variation in ob-

ject sizes. For the true baseline length s, γb = sλb. From

SLAM, s is assumed to be lognormally distributed, with

s ∼ Log-N (DSLAM , G2

SLAM ), therefore the logged BoW

object size measurement rb = log(λb) +DSLAM is normally

distributed about log γb with variance u2

b = G2

SLAM .

From measurements of multiple BoW objects from a class,

a Bayesian approach is used to estimate the parameters of

the BoW object class size distribution, µ and σ2 (dropping

the subscript bs for clarity). Each time a measurement λi of

a BoW object instance is made, the corresponding logged

measurement ri and its variance u2

i are used to update the

estimate of the BoW object class size distribution parameters,

µ, σ2. Appropriate conjugate prior distributions for each

parameter are the normal distribution for the mean size of

BoW objects, µ, and the gamma distribution for the precision

(inverse of the variance) of the BoW object size, τ = 1

σ2 [75].

When i measurements have been made:

µ ∼ N (Mi, 1/t
2

i ) (2)

τ ∼ Γ(αi, βi) (3)

and parameters of these conjugate distributions are given by:

Mi =
ti−1Mi−1 +

ri
u2

i

ti +
1

u2

i

(4)

ti = ti−1 +
1

u2

i

(5)

αi = αi−1 +
1

2
(6)

βi = βi−1 +
1

2
(Mi − ri)

2 (7)

Initially, uninformative parameters M0 = 0, t0 = ǫ, α0 =
1, β0 = ǫ, for some small ǫ > 0, are used. After i observations,

the parameters for the distribution of BoW object sizes are

taken to be the mean of these distributions:

µ = Mi, σ2 =
αi

βi

. (8)

σ2 is initially very large, but typically after four or five

observations is low enough that subsequent BoW object obser-

vations can substantially affect scale estimates. By Equation 4,

the most accurate measurements (those where u2

i is low) have

the greatest effect on the estimated parameters.

E. Object observation and scale updates

When the BoW dictionary is re-created, every scale estimate

(between pairs of frames) is updated with information from

measurements of BoW objects reconstructed between the two

frames. The same method is used to update new scale estimates

as new relative poses are added to the map.

The relative pose of two cameras has a baseline length

(scale) estimate modeled by a lognormal distribution with
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Fig. 4. Frames from the Suburban dataset, captured at 2.5Hz using a handheld
Canon 400D SLR camera. The trajectory is 2.5km long, takes 25 minutes,
and includes multiple loops. Dozens of pedestrians and cars pass by, and one
sequence of three frames is completely occluded by a passing bus.

parameters DSLAM and G2

SLAM . A set of M BoW ob-

jects, with size distributions parametrised by {(µj , σj), j =
1, ...,M}, is observed in a frame, with logged measurements

{logλj}. The scale of the edge s ∼ Log-N (D,G2), therefore

sλj is a random variable from Log-N (µj , σj), and hence

log s ∼ N (µj− logλj , σj). The maximum likelihood estimate

of the scale of these BoW object observations is given by

differentiating the log of this likelihood function and setting

equal to zero:

DOR =
M
∑

j=1

µj − logλj

σ2

j

(9)

G2

OR =
1

∑M

j=1

1

σ2

j

(10)

Combining these parameters with the parameters from

SLAM gives:

Dcombined =

(

DOR

G2

OR

+
DSLAM

G2

SLAM

)

/

(

1

G2

OR

+
1

G2

SLAM

)

(11)

where Dcombined is the scale estimate combining the scale

estimate from SLAM, and the scale estimate from observing

the BoW objects.

In summary, scale parameter estimates from SLAM alone

are used to estimate the size distributions of BoW objects.

These size distributions are used to compute the most likely

scale parameter for each edge, given the BoW objects that have

been observed. Observations of BoW objects only substan-

tially affect scale estimates when scale estimates from SLAM

have high uncertainty compared to the scale estimates when

object sizes were measured.

The computational cost of SCORE2 is dominated by iden-

tifying the B best BoW object classes following retraining.

This takes time O(BT ) after time T , as a fixed number of

feature co-occurrences occur in each image. When processing

the NZi3 dataset (described in Section V), 4% of the total

computational cost is related to SCORE2. As BoWSLAM

has O(T logT ) complexity per frame, SCORE2 does not add

significantly to the total cost.

(a) Distances measured of two BoW object classes, ‘round
shadows’, and ‘car wheels’.
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(b) Distributions of the sizes of these BoW object classes (15
and 19 measurements are made respectively).

Fig. 5. Two BoW object classes measured in an outdoor dataset have
significantly different size distributions. The lognormal distribution is a good
model, as it is unimodal, heavy-tailed, and non-negative.

TABLE II
RMS ERRORS IN GLOBAL MAPS OPTIMISED BY TORO.

Motion model RMS error Error relative to distance travelled

No motion model 198m 7.9%
SCORE2 71m 2.8%
Constrained acceleration 83m 3.3%
Constrained depths 56m 2.2%

V. RESULTS

This section describes results obtained from running

BoWSLAM, with SCORE2, on outdoor and indoor datasets.

First SCORE2 is tested on the the 2.5km, 3662 frame, out-

door ‘Suburban’ dataset, as shown in Figure 4. Maps of the

trajectories reconstructed using SCORE2, and using alternative

motion models, are shown in Figure 6. About 2000 BoW

objects (pairs of co-occurring features) are identified and

measured; of these, 455 have distributions with σb < 1 (while

all BoW object measurements are used, higher values are

too uncertain to have a significant effect on scale estimates).

The 455 BoW objects are each measured between 5 and 31

times (typically one or two per frame are measured); the BoW

object with the tightest distribution has σb = 0.47, whereas

the least accurate scales from SLAM have distributions with

G2

SLAM ≈ 1. Examples of BoW objects found in a similar

outdoor environment are shown in Figure 5.

Without using SCORE2, RMS errors of 198m remain in

BoWSLAM’s optimised map (Table II). SCORE2 reduces the

RMS errors to 71m; a 64% reduction in error.
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In [18], two motion models (assumptions about the camera’s

motion relative to its environment) were proposed in order

to reduce scale drift. The first, “Scale MM”, makes the

assumption that the mean depth of reconstructed points is

lognormally distributed. The most likely camera speed and

scale, given the depth of reconstructed points and the scale

estimate from SLAM, is used. The second motion model,

“Acceleration MM” is roughly equivalent to a constant velocity

motion model, and makes the assumption that the relative ac-

celeration between frames is lognormally distributed. Relative

scale estimates from SLAM are combined with the estimate

from the motion model. Both motion models reduce scale drift;

Scale MM reduces RMS errors to 56m in the suburban dataset

(although variation of tens of metres between different runs

and parametrisations are observed).

Two indoor datasets are also used to evaluate SCORE2.

The first dataset is captured at 2.8Hz with a Canon 400D

SLR camera in the NZi3 office building at the University

of Canterbury. Examples of frames from this dataset, and

BoW objects detected, are shown in Figure 7. The dataset

consists of a 20m straight line, two sharp right-angle corners,

then another 20m straight line. Scale drift often accumulates

when cornering rapidly, and is measured by comparing the

estimated lengths of the two 20m sections: the longer length,

as a fraction of the shorter length, provides a measure of scale

drift (Figure 8).

On this dataset, SCORE2 is compared to BOWSLAM alone,

and the two motion models proposed in [18] (outlined in

Figure 9). As levels of scale drift vary between runs (due

to random BoW clustering), thirty runs are made in each

case. Figure 10 shows the distribution of scale drift observed

for each motion model. SCORE2 substantially outperforms a

motion model constraining acceleration between frames (“Ac-

celeration MM”), and is close to matching the performance of

the model constraining point depths (“Scale MM”). SCORE2

reduces scale drift by an average of 75% compared with

BoWSLAM without a motion model.

It is possible that the objects chosen by SCORE2 are irrele-

vant; i.e. constraining any measurements of the world would be

equally effective. To verify that this is not the case, SCORE2

is run where each object measurement is replaced with a

measurement of a random pair of reconstructed points. This

scheme (“Random measurements”) only reduces scale drift by

a small amount; considerably less than the reduction when

using SCORE2. This verifies that SCORE2 works because

BoW object instances are being measured, rather then simply

that the scale of the world is constrained. Secondly, we verify

that BoW objects detected do have significantly different size

distributions. Figure 11 shows the distribution of the measured

sizes of the first five BoW object classes detected in the

NZi3 dataset (out of 19 in total). Several BoW object classes

detected have significantly different distributions of sizes. Note

also that the range of measured object sizes is large (with often

a 10-fold difference in size between the smallest and largest

measurement); an effect of this is that each observation makes

only a small difference to the estimated scale. The correction to

the scale is due to the accumulated effect of observing many

objects in many frames, and a single outlier observation is

Fig. 7. Frames from the NZi3 dataset. This dataset is captured in a
modern office environment, including many repeated features, large amounts
of reflective glass, and people. The distances between ceiling lights and
sprinklers (BoW object 4), and the distances between ceiling beams and
top windows (object 6) are measured throughout. Some other detected BoW
objects do not appear to correspond to any particular objects; measurements
of these may have a similar effect to constraining the depth of reconstructed
points.

�
�
�
�

�
�
�

Fig. 8. Map of robot poses, NZi3 dataset, and ground truth (measured)
trajectory. Significant scale drift (and also errors in orientation) accumulate
when cornering rapidly. Scale drift is measured as the ratio of the estimated
lengths of two sections of the trajectory, which have equal length (marked
‘out’ and ‘back’).
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(a) Global map, no motion model. Scale drift accumu-
lates at either end of the second trajectory, and within
loops.

(b) SCORE2: scale drift is reduced, and accuracy is comparable with an
alternative motion model constraining the scale of the world.

(c) Motion model constraining allowed scale of the world.
Scale drift is reduced, although the map is distorted where
the true scale of the environment does not reflect the depth
distribution assumed by the motion model.

(d) Ground truth data from GPS

Fig. 6. Maps of robot poses compared with ground truth from GPS, from the Suburban dataset (Figure 4). The path starts at S and traverses the large loop
twice, with various diversions. After 16 minutes the camera is stopped, then restarted at R. Later the original path is re-joined. Large errors in scale and
orientation occur at the ends of the trajectory, where loop-closure is not detected.
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SCORE2 BoWSLAM run with SCORE2 to recognise BoW objects and correct scale drift.

Scale MM Reconstructed 3D points are assumed to have depths from a lognormal distribution (as described in [18]).

Acceleration MM Constant velocity motion model; acceleration is assumed to have a lognormal distribution with zero median

(as described in [18]).

Random measurements SCORE2 modified to make a measurement between two random points, rather then points on a

BoW object. Verifies that SCORE2 works because measurements of instances from object classes are made, rather than

because it constrains the scale of the world.

No MM or OR BoWSLAM run without SCORE2 or any motion model.

Fig. 9. Motion models used for comparison with SCORE2.

Fig. 10. Box plots showing the distribution of scale estimates from 30 runs for each model on each dataset. The range, quantiles and median scale drift is
shown. A score of 100% would indicate no scale drift. SCORE2 greatly reduces scale drift in both the NZi3 dataset and the University of Alberta dataset.
SCORE2 outperforms a motion model constraining acceleration, and matches the performance of motion model constraining the scale of the world.

unlikely to substantially degrade the scale estimate.

A similar experiment is conducted with the University of

Alberta dataset. This dataset is captured from a wheeled robot

following a rectangular loop along corridors. Frames from this

dataset, and examples of BoW objects detected, are shown

in Figure 12. Again SCORE2 is compared to other motion

models (Figure 10), and again, SCORE2 substantially reduces

scale drift, and matches the performance of a constraint on

the depths of observed points. Frames are rearranged in the

test dataset, so that loop closure never occurs, however in the

original dataset, loop closure substantially reduces scale drift,

which can be partially corrected around the loop.

VI. CONCLUSIONS

This paper has demonstrated a novel solution to the problem

of scale drift in single camera SLAM. Bag-of-Words based

Object Recognition is used to learn sets of co-occurring

features which correspond to object classes, and to recognise

instances of the BoW objects from these classes. The distribu-

tion of BoW object sizes in each class is estimated, and this

information is used to correct scale drift. Scale drift can be

corrected even over long tracks where loop closure does not

occur, and results in only a small increase in the computational

cost.

SCORE2 reduces scale drift by 75% in one indoor dataset,
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Fig. 11. Distributions of sizes of the first five of the 19 BoW object classes detected in the NZi3 dataset. Some have significantly different size distributions,
indicating that the assumption that co-occurring features correspond to object classes with distinct size distributions is valid. The numbers in brackets indicate
the number of measurements of each object.

Fig. 12. BoW objects from the same class observed on several similar-looking
doors, University of Alberta dataset. (Each BoW object is measured in one
place per pair of frames, however in BoWSLAM each frame is registered to
many others, so the same type of object may be measured in several places
in the same frame.)

and reduces the total accumulated error by 64% in a large out-

door dataset. SCORE2 has similar performance to a heuristic

model of the scale of the world at reducing scale drift.

Experiments on indoor and outdoor datasets demonstrate

that BoW object classes with a variety of different size

distributions are found, and SCORE2 is verified to use the

different sizes of these different objects to correct scale drift.

VII. FUTURE WORK

There are many small improvements that would improve

the performance of SCORE2, in particular more sophisticated

methods for choosing and robustly measuring more complex

objects. In this section some planned improvements and ex-

tensions are detailed.

SCORE2 currently assumes that measurements of objects

are independent, however this is not true in general, as errors in

absolute scale estimates are correlated with each other. While

SCORE2 works well despite this assumption, the assumption

could be avoided if distributions of relative object sizes were

maintained instead. An object measured in two locations

would then introduce a constraint to the pose graph between

scale estimates in the two different locations. The constraint

on scale would then be applied when the pose graph was

optimised, although at the expense of increasing the cost of

the pose graph optimisation, as different sections of the map

would no longer partition so easily. A modern optimisation

framework such as g2o [69] could incorporate constraints of

this form.

The main limitation of SCORE2 results from the require-

ment that BoWSLAM should operate with minimal prior

knowledge of the environment to be explored, however for

many practical applications, prior knowledge about the envi-

ronment and the objects it contains is available. In this case,

both the BoW dictionary, and classes of objects which are

likely to be encountered, could be learned in advance from

training data. Examples of object classes might include cars,
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bicycles, people, and household objects; these are amongst the

20 categories which are recognised by schemes competing in

the PASCAL Visual Object Class challenges [58]; many of

these schemes are BoW based and some achieve recognition

rates of around 60% of object occurrences, in real-time [36].

Observations of these objects would provide absolute scale

estimates wherever they were observed.

BoWSLAM uses each image’s BoW representation for both

recognising locations, and for feature matching for relative

pose estimation. Simple image patch descriptors centred on

FAST corners perform well for these tasks, however for OR,

when objects should be recognised regardless of their pose,

scale, and location in the image, descriptors which are more

invariant to changes in scale, orientation and lighting levels,

such as SIFT or SURF, are often used. While BoW objects

are still recognised at a range of scales when using FAST

corners (as seen in Figures 11 and 12), OR performance could

potentially be improved by using a different descriptor and

detector combination.

This paper has demonstrated that BoW-based object recog-

nition can be used to correct scale drift in single camera

SLAM, however there are many other potential applications of

OR in visual navigation, and the authors believe that SLAM

schemes building maps based on high-level objects, rather than

low-level features, will enable many of the difficulties still

faced by SLAM schemes to be addressed.
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