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Abstract—To estimate the relative pose of two cameras from
outlier-contaminated feature correspondences, the essential ma-
trix and inlier set is estimated using RANSAC, then this estimate
is refined to minimise an error function on the correspondences.
This paper evaluates several refinement methods which minimise
functions of Sampson’s error. All perform well on large sets of
correspondences or when inlier rates are high, but many perform
poorly or fail when the inlier set found by RANSAC is small; this
is shown to be because the inlier sets contain remaining outliers,
while missing some inliers.

The most accurate solutions are given by minimising the robust
Blake-Zisserman function of Sampson’s error, although this
provides only a minimal improvement in accuracy compared with
least squares refinement. The most reliable results are given by

nonlinear optimisation constrained to the essential manifold. An
efficient parametrisation of the essential manifold as a quaternion
and a unit vector is described; applying Iteratively Reweighted
Least Squares combined with Levenberg-Marquardt optimisation
on this manifold takes typically less than one millisecond.

I. INTRODUCTION

Many computer vision applications require the relative pose

of two calibrated cameras to be computed from features

matched between two images (‘feature correspondences’).

Normally some features will be incorrectly matched, so an

estimation robust to these outliers must be used. This esti-

mation is often done by estimating the essential matrix, E, a

3× 3 matrix encoding the relative orientation and translation

direction between the two views [1].

E estimation is usually done in two stages: the first stage

is to use RANSAC [2] (or a similar algorithm) to find an

essential matrix which is approximately correct, together with

a set of matched features which are mostly inliers, and the

second stage is to refine the essential matrix to maximise a

likelihood function, given the inlier correspondences which

have been identified

Many schemes have been proposed for refining essential

matrix estimates, however these schemes occasionally fail in

the presence of outliers [3], [4], [5], and many have significant

computational cost [6], [7], [8]. This paper reviews and

evaluates some of these refinement algorithms and identifies

the circumstances in which they fail. The most successful

approach identified is to use Iteratively Reweighted Least

Squares optimisation to minimise the Blake-Zisserman robust

cost function of Sampson’s error. An efficient parametrisation

of the space of essential matrices in terms of a quaternion and

a unit vector is described; using this parametrisation, E can

be refined with an average of just 6 iterations, taking less than

one millisecond in total.

This paper is organised as follows: the following section

describes the essential matrix, its properties, and its estimation

using RANSAC; Section III describes algorithms for refining

E; Section IV describes an efficient parametrisation of E as

a point on a manifold of unit vectors and unit quaternions;

Sections V and VI presents experimental results on simulated

data and on synthetic images respectively, and Section VII

discusses our findings. Source code associated with the paper

is available online [9].

II. BACKGROUND

This section gives a brief overview of the essential matrix

and its properties, and its estimation using RANSAC. The

properties of E are analysed in more detail in Hartley and

Zisserman, Chapter 9 [10].

A. The essential matrix

The essential matrix, E, is a 3 × 3 matrix encoding the

rotation and translation direction between two views. If the

rotation is expressed as a matrix, R, and the translation as a

vector, t, then E is defined by:

E = [t]
×
R, (1)

where [t]
×

is the matrix-representation of the vector cross-

product, with the property that [t]
×
x ≡ t × x. As [t]

×
has

rank 2 in general, E also has rank 2. From two images alone,

the length of t cannot be determined, therefore E is only

determined up to scale. A matrix can be decomposed into

a rotation and translation in this way when its Singular Value

Decomposition (SVD; [10]) has the form:

E = U





s 0 0
0 s 0
0 0 0



VT (2)

where U,V are orthonormal matrices. Due to the sign and

scale ambiguity in E, U,V can always be chosen to be

rotation matrices, and s can be chosen to be 1.

If a 3D point X is viewed in two images at locations

x and x′ (where x,x′ are calibrated homogeneous image

coordinates), then E has the property that:

x′TEx = 0 (3)



Expanding this equation gives a single linear constraint in

the nine elements of E for every correspondence. From N

correspondences, these equations can be stacked to form a

9 × N matrix, with the essential matrix lying in the null

space of this matrix. Orthogonal Least Squares Regression

(OLSR), via the SVD, is used to find the least-squares fit [3].

Equation 3 is a biased measure of localisation error however,

so results from OLSR are typically not accurate enough to be

used alone [10].

The least-squares fit to Equation 3 is only an essential matrix

if it can be decomposed into a rotation and translation as per

Equation 1. The closest (by L2 norm) essential matrix to a

given matrix, M, is given by its SVD:

Eclosest = U





1 0 0
0 1 0
0 0 0



VT (4)

where M = UDVT is the SVD of M [10].

The OLSR algorithm, followed by this projection to the

space of essential matrices gives an essential matrix which is

approximately compatible with a set of correspondences.

E can be decomposed by SVD to give its corresponding

rotation and translation direction, however two rotations and

two (opposite) translation directions satisfy Equation 1 for any

given E. The correct R, t pair is identified by reconstructing

a 3D point for each possible R, t; the reconstructed point will

fall in front of both cameras only for the correct R, t [10].

Given the location of a feature in one image, x, Equation 3

defines a line (‘epiline’) through the other image where

any matching feature, x′, must lie. Feature locations contain

measurements errors however, so in practice features will not

lie exactly on the corresponding epilines. The distance in the

image between the epiline where a feature is known to lie,

and where its reconstructed 3D point is projected back to is

known as the reprojection error. An excellent approximation

to the reprojection error [10], [5], Sampson’s error, is given

by:

r((x,x′);E) =
x′TEx

√

(x′TE)2
0
+ (x′TE)2

1
+ (Ex)2

0
+ (Ex)2

1

Errors from point localisation are approximately Gaussian,

therefore, given N correctly matched features, {(xi,x
′

i
), i =

1...N}, the MLE of E is approximately the point where

N
∑

i=1

r((xi,x
′

i);E)2 (5)

is minimised.

B. Estimating E using RANSAC

The RANSAC (Random Sample Consensus [2]) robust

estimation framework enables E to be estimated from a set of

point correspondences contaminated with outliers. RANSAC

works by repeatedly choosing small random subsets of five

correspondences (‘hypothesis sets’), fitting an essential matrix

to each hypothesis set, then counting the total number of

correspondences where Sampson’s error is below a threshold.

Eventually an essential matrix compatible with many corre-

spondences will be found, usually because the hypothesis set

contained only inliers.

RANSAC effectively finds essential matrices which are

approximately correct, and inlier sets consisting mostly of

inliers (typically about 90%), but can be very slow to find more

accurate solutions [12], because of the large number of itera-

tions needed to find a hypothesis set containing only inliers,

and because fivepoint solvers are sensitive to point localisation

errors [11]. As a result, inlier sets tend to contain nearby

outliers, and to miss some inliers. Raising the inlier/outlier

threshold generally increases the numbers of both inliers and

outliers, and reducing it reduces the number of both.

III. ESSENTIAL MATRIX REFINEMENT

The second stage of relative pose estimation is to refine

the essential matrix (or the related fundamental matrix) to

maximise some likelihood function given the inlier set. Several

methods have been proposed; these each involve two important

design decisions: firstly, a cost function to minimise is chosen

(this is equivalent to choosing the distribution under which

the estimate will be an MLE), and secondly, an appropriate

optimisation algorithm and parametrisation is selected.

Cost functions in the form of a sum of squared residual

errors (i.e. Equation 5) are appropriate when errors in fea-

ture localisation are approximately Gaussian, however this is

not the case when features are incorrectly matched, when

large residuals are often observed. Numerous alternative cost

functions have been proposed which assign more appropriate

likelihoods to correspondences with large residual errors; a

selection of these are summarised in Figure III.

Functions in the form of a sum of squares can be minimised

efficiently using the Gauss-Newton algorithm, an iterative

procedure requiring only first derivatives. In practice, the

Levenberg-Marquardt (LM) algorithm [13], a dynamically

damped version of Gauss-Newton, is frequently used. LM

optimisation can also be used to minimise other cost functions,

by weighting the residuals on each iteration so that their sum of

squares is a local approximation to the desired cost function.

This is known as Iteratively Reweighted Least Squares, or

IRLS [10]. To minimise a function
∑N

i=1
C(ri) for an arbitrary

cost function C using IRLS, weights {wi} are chosen so that

(wiri)
2 = C(ri). The function:

N
∑

i=1

(wiri)
2 (6)

is minimised by LM, with weights recomputed on each

iteration.

Conventional gradient descent optimisation algorithms, such

as LM, operate on parameter sets in Cartesian space (Rn),

however it is often convenient to constrain the parameter sets

to a manifold embedded in Rn. Manifolds which can be locally

approximated by a subspace of Rm are differential manifolds.

To minimise an objective function where parameters x lie on



Cost function Corresponding model

Least-squares CLS(r) = r2 Gaussian errors.

Huber CHuber(r) =

{

r2, if a < t

2t‖r‖ − t2 otherwise.

Errors from heavy-tailed distribution, approx.

Gaussian near minimum.

Pseudo-Huber CPH(r) = 2t2(
√

1 + ( r
t
)2 − 1) Smoothed version of Huber cost

Blake-Zisserman
CBZ(r) = log(1 + ǫ)− log(exp(−( r

σ
)2) + ǫ)

where ǫ ≈ exp(−( d
σ
)2)

Gaussian errors in inliers, outliers all equally likely.

Fig. 1. Cost functions evaluated (from [10]; Appendix 6.8), and the corresponding error distributions for which the model minimising the summed errors is
an MLE. t is the inlier/outlier threshold, and σ

2 is the variance in feature localisation.

a manifold, the function is reparametrised on each iteration in

terms of a basis of vectors tangent to the manifold at x.

One convenient parametrisation of E is in terms of its

corresponding rotation and translation direction (Equation 1).

Both the space of 3D rotations and the space of translation

directions are differential manifolds. Ma et al. [6] use New-

ton’s method to minimise an error similar to Equation 5,

with updates constrained to the manifold of essential matrices.

They report that false minima are found even with relatively

small, and Gaussian, localisation errors however. Rosten et

al. [14] use a Lie algebra to represent rotations, and estimate

E by minimising a robust cost function by IRLS/LM. They

report that the optimisation can be slow to converge, and

can have cost comparable to the costs of RANSAC. Helmke

et al. [15] propose an alternative manifold, in which E is

parametrised in terms of the two rotation matrices in its SVD

(Equation 2). Each Gauss-Newton iteration is computationally

less expensive (having lower renormalisation costs) than Ma

et al.’s approach, however again the method only converges

locally in general.

An alternative parametrisation of rotations is as an axis-

angle pair. Hartley and Kahl [8] use this parametrisation when

minimising the (non-robust) L∞ norm of Sampson’s error.

Run times are slow (several seconds or more), partly because

of the parametrisation of E chosen. A starting point close to

the true minimum is first found by searching the parameter

space, as otherwise false minima are found.

A common alternative to estimating E is to estimate the

fundamental matrix, F, instead [4], [3], [16]. F is a 3 × 3
matrix which satisfies Equation 3, and is related to E via the

two camera’s calibration matricesK1,K2: F = KT
2
EK1. Dis-

advantages of F estimation is that the sevenpoint hypothesis

generation algorithm commonly used in RANSAC does not

work for near-planar points [16], [11], [3], and that solutions

can be found which are incompatible with the known camera

calibration.

Torr and Murray [3] estimate F using an OLSR-based

method to minimise a robust function of Sampson’s error (e.g.

Huber’s cost function). Each iteration applies the OLSR algo-

rithm (Section II-A), but weights each constraint (each row

in the matrix) as for IRLS, with the weights calculated from

both the robust cost function and the bias correction needed

for Equation 3. After each iteration, the solutions are projected

to the space of fundamental matrices (those with determinant

zero) by SVD. This Reweighted OLSR method is compared

to a gradient-descent-based minimisation of the robust cost on

the output of a RANSAC-like algorithm. The gradient-descent-

based minimisation is more accurate, although false minima

are often found. The authors recommend the combination of

a RANSAC-like prior estimate, Reweighted OLSR to improve

the solution, then nonlinear optimisation to further refine the

solution. Zhang [17] also uses a nonlinear optimisation to

minimise a robust cost, and find that results are accurate

only when gross outliers are first removed by a RANSAC-

like algorithm. F is parametrised to preserve constraints that

F is singular and has unknown scale; by constraining the

optimisation, more accurate results are obtained than with

Reweighted OLSR.

Trivedi [18] describes a relative pose refinement scheme

where correspondences are assumed to be a mixture of inliers,

with Gaussian localisation errors, or outliers, where any locali-

sation error has the same likelihood. This leads to a robust cost

function similar in shape to the Blake-Zisserman cost shown

in Figure III. To minimise this cost, the Downhill Simplex

method is used; a gradient descent-like method which makes

few implicit assumptions about the shape of the objective

function. Lacey et al. [12] show this method to give more

accurate results than RANSAC for relative pose estimation in

the presence of outliers, given a suitable prior estimate of the

relative pose.

In summary, numerous robust and least-squares optimisation

methods have been proposed for refinement of the essential

or fundamental matrix. These methods often perform poorly

in the presence of gross outliers; these outliers should be

removed first by RANSAC [3], [17]. Of the methods reviewed,

many involve computationally expensive parametrisations of

E, and some converge to false minima if not initialised

appropriately [3], [8].

IV. COMPARISON OF REFINEMENT ALGORITHMS

This paper aims to identify the combination of cost function,

optimisation algorithm, and parametrisation most appropriate

for refining the essential matrix and inlier set estimated by

RANSAC. The combination must be robust to the outliers



which remain following RANSAC, however these incorrect

correspondences have low residual errors, so will not nec-

essarily degrade results. The three criteria used to evaluate

these algorithms are firstly, the ‘Success rate’, the proportion

of times when an approximately-correct solution is found;

secondly the median absolute error in the solution found; and

thirdly the computational cost, as RANSAC is frequently used

in applications requiring real-time performance.

The optimisation algorithms evaluated are Reweighted

OLSR, and a nonlinear optimiser. Reweighted OLSR, described

in Section III, solves an OLSR problem on each iteration,

then projects the solution to the space of fundamental matrices

following each iteration. We have also modified this algorithm

so that the solution is projected to the space of essential

matrices instead, using the projection defined in Equation 4

(marked Reweighted OLSR for E).

The nonlinear optimiser evaluated is IRLS, combined with

LM optimisation (labelled IRLS/LM). Although different opti-

misation algorithms could be used, those which are constrained

to the set of essential matrices should all find the same

minima; the difference between different algorithms is their

computational efficiency for this problem. The different cost

functions evaluated are listed in Table III.

For nonlinear optimisation, E is parametrised as a function

E(q, t) of a unit translation vector t, and a rotation, which

is expressed as a quaternion q. Unit quaternions concisely

represent 3D rotations as 4D unit vectors. 4D unit vectors

form the differential manifold S
3 (the unit sphere in 4D), on

which optimisation algorithms can be applied (Section III).

This manifold is well-suited to the problem of E estimation,

as it is a continuous representation of rotations, with distances

in S
3 corresponding to the difference in orientation between

corresponding rotations, and because the computational costs

of converting quaternions to rotation matrices, and of nor-

malising quaternions following updates, are low compared to

other representations of rotations (i.e. axis-angle or Lie group

representations).

At each iteration, the manifold S
3 is parametrised as three

vectors τ1, τ2, τ3 tangent to the sphere S
3 at q. For each

correspondence (x,x′), the derivative of the cost function in

the direction τi is computed by finite differences:

∆τi
C((x,x′),E(q, t)) (7)

= 1

δ
[C((x,x′),E(q+ δτi, t))− C((x,x′),E(q, t))]

for some small step size δ.

Unit translation directions similarly form the differential

manifold S
2 (the unit sphere in 3D), and derivatives are

computed in the same way. After each iteration, q and t are

updated and renormalised.

V. RESULTS ON SIMULATED DATA

This section presents experimental results using simulated

data. For each run, 3D points are generated randomly, and

are projected into two cameras. The cameras have a field

of view of 0.8 radians, and a relative pose with random

translation direction, and random relative orientation with an

angle of up-to 0.75 radians (to ensure that points stay in front

of the cameras). Outlier correspondences are introduced by

mismatching features at random, and simulated localisation

errors with standard deviation 0.0025 radians (2 pixels at

640x480) are added to each feature location. After each run,

the relative pose from the algorithm being tested is compared

to the known relative pose. Figures given are averages over

thousands of runs, and have 95% confidence bounds smaller

than 1% of their values, however values vary with different

parametrisations of the algorithms and of input data.

The inlier/outlier threshold in RANSAC is set to 0.01

radians. For robust cost functions, the inlier/outlier thresh-

old is set to 0.005 radians; this is determined empirically

to correctly separate inliers and outliers when the correct

relative pose is found. Following RANSAC, and following

each algorithm when sequences of algorithms are considered,

inliers and outliers are re-assessed, and correspondences with

reconstructed points not lying in front of both cameras are

marked as outliers.

The robust norms are first tested by refining E estimated by

RANSAC on all correspondences. The optimisation diverges

from the true solution in most cases, even for outlier rates

as low as 10%. Even the most robust cost function, Blake-

Zisserman, often converges to an inaccurate solution. All

subsequent experiments use only the current inlier set.

The next experiment conducted is to identify which algo-

rithms are most often successful. A successful run is defined

to be one where the orientation is recovered to within 0.25

radians of the true value; and where a majority of the inlier

set are in front of the same pair of cameras. Results are shown

in Table I. When inlier sets are large (e.g. 25% of 500 cor-

respondences), all algorithms successfully recover the relative

pose over 90% of the time. When fewer correspondences are

available however, e.g. with only 50 or 100 correspondences

and a 25% inlier rate, the performance of all of the algorithms

deteriorates, in particular the Reweighted OLSR algorithms.

When Reweighted OLSR fails, the solution often alternates

between a matrix with low residual errors, and an essential or

fundamental matrix with considerably higher residual errors.

There is no significant difference between the success rates for

different robust cost functions, or for Reweighted OLSR for E

rather than F.

When simulated points are approximately planar, the per-

formance of all algorithms falls substantially (even though

RANSAC is still correctly identifying inlier sets containing

over 80% inliers). While RANSAC for F is known to perform

poorly in this situation [16], this is not generally the case when

estimating E [11]. The small numbers of outliers remaining

are having a large effect on accuracy in this situation (although

given 500 planar inliers, robust optimisation still achieves only

79% success).

The next experiment examines why the methods fail when

they do; results from various experiments to determine why

are given in Figure 2. One possibility is that false minima

are being found, so the optimisation is artificially started from



Fig. 2. Experiments to identify when the IRLS/LM method fails. 25% inliers, least-squares cost unless otherwise stated.

TABLE I
SUCCESS RATES FOR DIFFERENT E REFINEMENT ALGORITHMS,

SIMULATED DATA WITH 25% INLIERS BEFORE RANSAC. A RUN IS

SUCCESSFUL IF THE ORIENTATION ESTIMATED IS WITHIN 0.25 RADIANS

OF THE CORRECT ORIENTATION.

# correspondences
Algorithm 50 100 500 500, planar points

Least squares/LM 58% 82% 92% 58%
Huber IRLS/LM 58% 84% 90% 58%
Pseudo-Huber IRLS/LM 58% 84% 90% 58%
Blake-Zisserman IRLS/LM 58% 83% 91% 58%
Reweighted OLSR for E 40% 76% 90% 58%
Reweighted OLSR for F 39% 75% 92% 58%
Reweighted OLSR Pseudo-Huber 40% 75% 92% 58%
RANSAC alone 37% 71% 85% 54%

the relative pose which is known to be correct. Success rates

and residual errors are identical, indicating that the same

minima are being found, and that false minima are not a

problem. Another reason may be the outliers included in

RANSAC’s inlier set. Artificially removing these outliers gives

an improvement in accuracy for large point sets, but not for

smaller point sets. Alternatively, artificially adding missing

inliers improves results for small and large point sets, and both

removing outliers and adding inliers improves results substan-

tially, indicating that missed inliers and additional outliers are

both important for recovering correct relative poses. Larger

inlier sets can be found by iterating RANSAC more times,

this is illustrated by iterating RANSAC 20000 times. The inlier

sets with largest support still contain outliers, and for small

correspondence sets, these outliers cause success rates to be

lower than the 74% which would be possible if the correct

inliers/outliers were found.

One possible method of improving the inlier set’s accuracy

would be to repeat the nonlinear optimisation several times,

with the inlier set reassessed after each run. The results of

two least-squares iterations (labelled Least squares, repeated)

show that this provides no consistent improvement in results.

While the choice of robust cost function makes no signif-

icant difference to success rates, it does affect the accuracy

of the solutions, as shown in Figure 3. For large correspon-

dence sets, the robust cost functions all give more accurate

solutions than least-squares cost. The Blake-Zisserman cost

function, which is designed to correctly model the inlier/outlier

Fig. 3. Median absolute errors in orientation, radians.

distribution, gives very accurate results for large point sets,

but poorer-than least-squares results for small point sets. This

is because for small point sets, the RANSAC inlier set still

contains many outliers. As the residual errors in these outliers

are as low as for inliers, the robust cost functions do nothing

to avoid them.

Table II shows the run times for the various algorithms,

and the numbers of iterations required. Each is implemented

in C++ using the Eigen matrix library [19], and compiled

using gcc (source code is available online [9]). Times are

given for code running on a single core of an Intel i7

processor, running at 2.93GHz. Times are dominated by

the computation of residuals (and corresponding weights for

IRLS); the costs of the LM algorithm itself are minimal. All

algorithms are substantially faster than the efficient RANSAC

implementation used [11], demonstrating the suitability of the

IRLS/LM optimisation algorithm, and quaternion/unit trans-

lation vector parametrisation chosen. Convergence is fast for

all cost functions, indicating that IRLS/LM performs well at

this optimisation. The Blake-Zisserman cost function requires

more iterations than the other cost functions, however this

optimisation is still fast compared with RANSAC.

VI. RESULTS ON SYNTHETIC IMAGES

The SLAMDUNK system [20] simulates images from a

moving camera by using a ray tracer. The images provided

by the authors include high levels of self-similarity, and large

planar surfaces; these images are used to test the essential



TABLE II
TYPICAL RUN TIMES AND NUMBERS OF ITERATIONS REQUIRED (ALL VARY WITH DIFFERENT PARAMETRISATIONS/CONVERGENCE CRITERIA).

50 correspondences 500 correspondences
Algorithm Time (ms) # Iterations Time (ms) # Iterations

Least squares/LM 0.10 6 0.30 6
Huber IRLS/LM 0.11 7 0.40 7
Pseudo-Huber IRLS/LM 0.12 7 0.50 7
Blake-Zisserman IRLS/LM 0.19 12 1.6 11
All Reweighted OLSR 0.06-0.08 3 0.1 3
RANSAC, until 20% support found 19 2175 21 2305
RANSAC, 20000 iterations 180 20000 210 20000

TABLE III
RESULTS ON SYNTHETIC IMAGES (SLAMDUNK DATASET).

Median error (radians)
Algorithm Success Orientation Translation dir.

RANSAC 98% 0.078 0.286
IRLS/LM Pseudo-Huber 99% 0.072 0.213
IRLS/LM Blake-Zisserman 99% 0.071 0.200
Least-squares LM 99% 0.073 0.222
Least-squares LM, repeated 99% 0.072 0.217
Reweighted OLSR for E 96% 0.072 0.222

matrix refinement. Patches of the image centred on FAST

corners [21] are matched between frames, using the sum of

squared differences to compare patches. 269 pairs of frames

captured 0.67 seconds apart are used. Relative orientations

of 0.5 radians are typical between pairs of frames, typically

about 300 features are matched, and inlier rates are typically

50%. Table III shows the errors in recovered rotations and

translations, and the success rate of the various algorithms.

All algorithms achieve at least 96% success, although again

the nonlinear optimisation outperforms Reweighted OLSR. As

before, the robust norms provide only a very small improve-

ment in accuracy.

VII. DISCUSSION

This paper has evaluated several different options for

the refinement of essential matrices estimated by RANSAC.

The most reliable and accurate approach is to use Itera-

tively Reweighted Least Squares, combined with Levenberg-

Marquardt optimisation, to minimise a robust cost function

based on Sampson’s approximation to the reprojection error.

Essential matrices are parametrised by a unit quaternion and

unit translation vector; this efficient and minimal parametrisa-

tion ensures that computational costs are low compared with

the cost of RANSAC. This approach is shown to outperform

alternative methods based on iteratively solving a weighted

linear system.

All algorithms occasionally fail to compute an accurate

solution, particularly with small correspondence sets and when

inlier rates are low. Failures are caused by both remaining out-

liers, and missing inliers, in the inlier set found by RANSAC.

Increasing the number of RANSAC iterations only partially

addresses this problem, as the essential matrix with the largest

support still leads to an inlier set containing many outliers.

Different robust cost functions are evaluated. Improvements

in accuracy compared with a least-squares approach are min-

imal, although the Blake-Zisserman cost function provides a

small improvement in accuracy for large correspondence sets.

For smaller correspondence sets, the minimal robust cost often

incorrectly identifies remaining outliers as inliers.

REFERENCES

[1] H. Longuet-Higgins, “A computer algorithm for reconstructing a scene
from two projections,” Nature, vol. 293, pp. 133–135, 1981.

[2] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[3] P. H. S. Torr and D. W. Murray, “The development and comparison
of robust methods for estimating the fundamental matrix,” Int. J of

Computer Vision, vol. 24, no. 3, pp. 271–300, 1997.
[4] Z. Zhang, “Determining the epipolar geometry and its uncertainty: A

review,” Int. J of Computer Vision, vol. 27, no. 2, pp. 161–195, 1998.
[5] T. Botterill, “Visual navigation for mobile robots using the bag-of-words

algorithm,” Ph.D. dissertation, University of Canterbury, 2010.
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