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Abstract

This paper describes BoWSLAM, a scheme for a robot to reliably navigate and map a priori

unknown environments, in real-time, using monocular vision alone. BoWSLAM can navigate chal-

lenging dynamic and self-similar environments, and can recover from gross errors. Key innovations

allowing this include new uses for the Bag-of-Words image representation; this is used to select the

best set of frames to reconstruct positions from; and to give efficient wide-baseline correspondences

between many pairs of frames, providing multiple position hypotheses. A graph-based representation

of these position hypotheses enables the modeling and optimisation of errors in scale in a dual graph,

and the selection of only reliable position estimates in the presence of gross outliers. BoWSLAM is

demonstrated mapping a 25 minute 2.5km trajectory through a challenging and dynamic outdoor

environment without any other sensor input; considerably further than previous single camera SLAM

schemes.

1 Introduction

This paper describes BoWSLAM: a scheme allowing a mobile robot equipped with a single camera and
moving in three dimensions to position itself in a previously unknown environment. BoWSLAM uses
new techniques to successfully navigate dynamic environments despite erratic camera motion, corrupted
position estimates, total disorientation, or large accumulated errors. A map of the environment that has
been explored is built, and this map is refined and improved when places are re-visited.
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The most successful schemes to-date for positioning using a single camera (Clemente et al., 2007;
Lemaire and Lacroix, 2007; Eade and Drummond, 2008; Nistér et al., 2006; Dellaert and Kaess, 2006;
Mouragnon et al., 2009; Strasdat et al., 2010) have been demonstrated navigating tracks of a few hundred
metres at most, through mostly static environments. BoWSLAM is demonstrated mapping a 2.5km tra-
jectory in real-time through a dynamic environment, with no other sensor or odometry input. BoWSLAM
is designed to enable the positioning of low-cost robots with poor odometry or unpredictable motion, for
example walking robots or quadrotors, or to aid pedestrian navigation.

Two main innovations allow BoWSLAM to navigate difficult environments: firstly the Bag-of-Words
(BoW) algorithm (Sivic and Zisserman, 2003), normally used for detecting ‘loop closure’ by recognising
when locations are re-visited, is used in two new ways: for fast feature matching, allowing multiple
position hypotheses to be generated for each camera location, and for smart selection of frames from
which to compute each pose. Secondly a graph-based map of these relative position hypotheses allows
the selection and optimisation of only the most reliable position estimates, and allows the perceived scale
of the world to be modelled and scale-drift to be corrected via a dual graph.

BoWSLAM is substantially different from any previous single camera navigation scheme: a high
framerate is not required, enabling a high-level representation of each frame to be built and multiple po-
sition hypotheses to be calculated; few assumptions about motion are made, allowing navigation despite
erratic camera motion or gross errors in dynamic environments, and a novel graphical representation of
relative positions and scales allows selection of only the best position hypotheses in the presence of many
gross outliers.

This paper is organised as follows: the next section describes contemporary approaches to navigation
and SLAM using vision and the BoW algorithm; Section 3 describes BoWSLAM, the new uses for
the BoW algorithm, and how information from the additional position hypotheses it generates is used;
Section 4 presents results from positioning a camera with videos from difficult indoor and outdoor
environments; and the final section discusses our conclusions and future plans. Full source code, and
videos of BoWSLAM in operation, are available online at http://hilandtom.com/tombotterill.

2 Background

Low-cost positioning in dynamic real-world environments is an essential enabling technology for mobile
robots working in homes, workplaces, and outdoor environments where GPS is unreliable or unavailable.
A single camera is an ideal sensor for this as it is inexpensive, passive, compact, non platform-specific
and requires relatively little power, however existing schemes for navigating using monocular vision are
prone to failure due to gross errors or disorientation in difficult environments. In addition position
estimates obtained by accumulating many small relative position measurements (dead-reckoning) from
sensors such as vision will accumulate errors and drift over time, eventually rendering them useless.
For long-term positioning the environment being explored must also be mapped so that the robot can
recognise previously visited locations and correct errors in its position estimate (Smith et al., 1990). This
combination of positioning and mapping is known as Simultaneous Localisation and Mapping, or SLAM.

Many existing real-time systems for visual navigation suffer from larger accumulated errors than
systems using other sensors or sensor combinations (laser scanners, inertial measurement units, wheel
encoders), and often encounter gross errors or fail entirely in visually difficult environments (for example
dynamic environments). These problems are caused by data association difficulties (Eade and Drum-
mond, 2008; Bosse et al., 2004), large non-Gaussian uncertainties in estimated point depths (Montiel
et al., 2006), moving features incorrectly identified as being static, and poorly conditioned geometry. An
additional problem with monocular vision is a global scale ambiguity: the actual scale of the world and
speed of the camera can only be estimated by identifying something of known size, and small errors in
scale can accumulate over time. However vision has a key advantage over other sensors: rich information
about the environment is collected that may be used to recognise when places are re-visited, even when
the robot is lost. This ability to detect loop closure allows accumulated errors to be corrected, enabling
accurate long-term positioning in bounded environments.

Recently several visual navigation systems have been developed addressing some of these problems
(Nistér et al., 2006; Clemente et al., 2007; Eade and Drummond, 2006, 2008; Mouragnon et al., 2009;
Strasdat et al., 2010). These all work by identifying a stationary 3D world and estimating both the
position of landmarks and the camera within it. These systems fall into two categories, firstly Visual
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SLAM schemes that estimate a global map while positioning the camera in this map, and secondly
Visual Odometry schemes performing dead-reckoning by vision. The next two sections detail these
different approaches.

2.1 Visual Simultaneous Localisation and Mapping

SLAM involves the simultaneous estimation of a map and the robot pose; the two most popular contem-
porary approaches to this estimation are to use either an Extended Kalman Filter (EKF; Dissanayake
et al., 2000) or a particle filter (Montemerlo et al., 2002). These approaches can be very successful on a
small scale, but have a limited ability to navigate larger environments or assimilate loop closure infor-
mation. Both approaches have been adapted for SLAM using a single camera; here we describe some of
the most successful of these schemes.

MonoSLAM (Davison, 2003) is an EKF-based SLAM scheme using monocular vision. Landmark
positions (image feature locations) are estimated directly from observations in the image using an EKF.
Several extensions have been proposed including the Inverse Depth representation to reduce errors from
initially-uncertain landmark depths (Montiel et al., 2006) and active landmark identification (loop-closure
detection) to recover from disorientation (Williams et al., 2008), but despite these improvements real-
time performance is limited to maps of a few tens or hundreds of landmarks (Williams et al., 2008).
Where there is no loop closure, the small number of landmarks tracked in each frame, and linearisation
errors from the EKF, lead to significant drift. Erratic camera motion may be reconstructed with very
high frame rates (200Hz) (Gemeiner et al., 2008), however this limits ‘real-time’ performance to just a
few seconds.

Clemente et al. (2007) extend MonoSLAM to larger environments by using submaps: MonoSLAM
is used on a small scale, then a new submap is started when this map grows large. The scheme by
Estrada et al. (2005) is used to combine these locally-accurate submaps into an accurate global map,
by optimising transformations between submaps. A 250m loop is closed, giving an accurate global map.
Validating the mutual consistency of tracked features before incorporating them into the EKF ensures
that positioning does not fail, despite a dynamic environment including pedestrians.

Another EKF-based approach by Lemaire and Lacroix (2007) combines bearings to landmarks with a
prior depth distribution in an EKF, which refines these landmark position estimates as more observations
are made. Panoramic images give a wide range of bearing measurements to each landmark, and provide
the same field of view on repeated visits to a location enabling loop closure to be detected reliably.
Navigation of a 200m trajectory is demonstrated, however this is unlikely to scale much further due to
the EKF’s poor complexity and potential failure if any outlier measurements are incorporated. Panoramic
cameras combined with robot odometry are also used by Dellaert and Kaess (2006), with measurements
integrated in a ‘square root filter’; this has lower complexity than an EKF (the linear system to be solved
is kept sparse); a 200m indoor trajectory is mapped in 11 minutes, although no loops are closed.

An alternative estimation approach is given by the FastSLAM particle-filter (Montemerlo et al.,
2002); this has been adapted for monocular vision (Eade and Drummond, 2006), but real-time operation
is limited to a few hundred landmarks, and loop closure is demonstrated only on small scales.

Several recent SLAM schemes avoid some of the difficulties in scaling to large environments with
graph-based representations of the world: as the SLAM problem consists of constraints (measurements)
between robot poses and observations of the world then if these constraints are represented as the
edges in a graph then a solution is given by an optimisation on this graph (Thrun and Montemerlo,
2006). A popular and scalable graph-based formulation is given by the Atlas framework (Bosse et al.,
2004). In this hybrid approach each node represents a small group of landmarks in their own local
coordinate frame (a ‘submap’ where a conventional SLAM algorithm is used), and each edge represents
a transformation between these coordinate frames. Accurate positions of a node relative to a root node
can be reconstructed cheaply by finding the ‘shortest’ path through the graph, where edges are weighted
by a measure of their transformation’s accuracy.

The most efficient algorithms to perform the global optimisation needed to generate world maps from
these graph-based representations first assume the errors in these transformations are Gaussian and
independent, then iteratively update positions to reduce local errors, either via a ‘relaxation’ procedure
(Frese et al., 2005), or by stochastic gradient descent, with updates applied to consecutive subsections
of the robot’s trajectory (Olson et al., 2006). The TORO framework (Grisetti et al., 2007b) efficiently
implements a stochastic gradient descent optimisation where robot poses are grouped spatially rather
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than temporally. A 3D generalisation of TORO (Grisetti et al., 2007a) works by alternately optimising
rotations and translations. This approach allows good approximations to the maximum likelihood map
to be found efficiently even in large maps, and if the number of cycles is limited then the number of
iterations needed is constant and each iteration has linear complexity in the size of the mapped area
(Frese et al., 2005).

An Atlas-based single camera SLAM scheme is described by Eade and Drummond (2007). The
transformations and estimated covariances between nodes are refined by gradient descent subject to
consistency around cycles. Large loops can be detected using BoW and closed rapidly by adding edges
to this graph (Eade and Drummond, 2008), although optimisation becomes expensive when maps are
large (Eade, 2008).

Two more graph-based schemes using stereo cameras are also relevant: Konolige et al. (2009) accu-
mulate a sequence of relative poses between frames, together with relative poses from global loop-closure
detection, allowing recovery from gross errors. Navigation is demonstrated over 10km, although relative
positions from an IMU are needed for about 2% of frames where positioning fails due to camera occlusion.
The authors claim their scheme is applicable to single-camera-SLAM, although this is not demonstrated,
and no framework to model scale-drift is proposed. Again a TORO-like optimisation framework is used
to produce optimal global maps. A similar graph-based map is built by Newman et al. (2009), using
stereo vision and a laser scanner. Every pose is represented by a node, and edges represent relative po-
sitions of nodes. Real-time performance is possible until a global map is required; this global optimising
is a slow off-line process, taking 20 minutes for a 50 000 pose graph.

An alternative to these global mapping approaches is described by Mei et al. (2009): SLAM with a
stereo camera is demonstrated on a trajectory of over a kilometre but only local submaps consisting of
nearby nodes are optimised (using a local bundle adjustment), keeping complexity to constant time. A
similar scheme for single camera SLAM is described by Strasdat et al. (2010). Relative poses between a
subset of frames are found by a local bundle adjustment, then the pose graph of these relative poses is
refined by Levenberg-Marquardt nonlinear optimisation. Notably, relative scale estimates between frames
are also optimised. When the camera travels around a 220m loop, significant scale drift is observed (a
three-fold difference when the loop is closed); this is corrected when the loop closure is detected, greatly
reducing distortions in the map.

2.2 Visual Odometry

Visual Odometry is a slightly simpler problem than SLAM in that only the camera motion is of interest,
and no global map is built. This frees computational resources for the computation of accurate pose
estimates, however without the loop closure detection of SLAM small errors in position will accumulate
over time and grow without bound, until eventually the true pose is unknown. One successful visual
odometry scheme is that by Nistér et al. (2006), which uses structure-from-motion techniques to position
a monocular camera in static outdoor environments over a 600m trajectory. Approximate relative poses
over three frames are estimated and refined iteratively, then 3D world points are estimated. Several
additional frames can then be positioned with respect to this local structure. The scheme is dependent
on features moving typically less than 10% of the frame width between consecutive frames, and on
features being visible for many consecutive frames. Accumulated errors are as low as 2% of the distance
travelled after two thousand frames, although without a map there is no means to correct these errors, or
to recover from gross errors. More recently Mouragnon et al. (2009) use incremental bundle-adjustment
to reconstruct camera trajectories of up to 500m in dynamic environments, after outlier removal using
RANSAC, although again feature motion is constrained.

2.3 The Bag-of-Words algorithm in Visual Navigation

Eventually a robot travelling in an unknown environment will re-visit somewhere it has been before.
Detecting this loop-closure event is essential for long term navigation, and to recover from gross errors or
disorientation. In addition knowledge of the loop allows map estimates around the loop to be improved
and a consistent map to be maintained. Vision is an ideal sensor for detecting loop closure as it captures
rich and distinctive information about the environment, and the most successful schemes for loop closure
detection are based on the Bag-of-Words (BoW) algorithm. The BoW image representation describes
an image by the set of features that it contains. A set of feature descriptors is extracted from each
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image and each descriptor is mapped to its closest match from a quantised ‘dictionary’—a discrete set
of representative features (also known as a ‘codebook’ or ‘vocabulary’). The image BoW algorithm was
developed for fast and accurate image search—images can be compared very quickly to see if they have
many features in common, and hence may be of the same object or location. This is often highly accurate
despite ignoring the image geometry. The BoW algorithm’s ability to recognise the location a photo was
taken has been demonstrated by Sivic and Zisserman (2003), who used it to segment movies by location,
and by Cummins and Newman (2008a, 2009) who accurately detect loop closure events in a database of
100 000 frames collected over hundreds of kilometres.

Most BoW schemes generate a dictionary off-line by K-means clustering of descriptors from a training
set (e.g. Nistér and Stewénius, 2006; Newman et al., 2006; Sivic and Zisserman, 2003; Li and Perona,
2005). An alternative approach is to dynamically construct a dictionary from the features which are
encountered as the environment is explored, so that environments with features not represented in the
training set can be recognised effectively. Such a scheme is described by Angeli et al. (2008a), which closes
small loops indoors, although real-time (1Hz) performance is limited to about 2000 images. Similarly
Eade and Drummond (2008) and Nicosevici and Garca (2009) initialise new words dynamically and add
them to a vocabulary, although in both cases the number of words used are orders of magnitude smaller
than other schemes (a few thousand).

SIFT (Lowe, 1999) and SURF (Bay et al., 2008) are the most popular descriptors for BoW scene
recognition (Nistér and Stewénius, 2006; Newman et al., 2006; Cummins and Newman, 2008b; Angeli
et al., 2008b,a; Csurka et al., 2004; Li and Perona, 2005; Filliat, 2007; Eade and Drummond, 2008;
Nicosevici and Garca, 2009). When used for robot localisation these schemes typically index images
at around 1Hz (Cummins and Newman, 2008b; Angeli et al., 2008b), as extracting SIFT or SURF
features from every frame is too slow for real-time processing (Rosten and Drummond, 2006; Cummins
and Newman, 2009). Therefore when used for loop-closure detection in SLAM, BoW is usually run in
isolation on a subset of frames (Eade and Drummond, 2008; Newman et al., 2006, 2009). Occasionally
a good loop closure candidate is found and this information is used to update the map. Some of these
schemes explicitly estimate the loop closure probability (Angeli et al., 2008a; Cummins and Newman,
2008a, 2009), whereas others achieve high levels of accuracy with heuristic measures of relative image
similarity (Newman et al., 2006; Nistér and Stewénius, 2006).

2.4 Summary of prior research

In summary, numerous schemes have been demonstrated which enable robots to position themselves using
a single camera alone; these schemes often work in real-time and over tracks of hundreds of metres, while
often producing accurate maps within a few percent of ground truth. There are two major limitations
of these approaches however: firstly the environments explored are largely static, and rapid cornering
(during which single-camera geometry is poorly conditioned) is largely avoided, however typical indoor
or urban environments where robots will one day operate contain moving people and vehicles; a robot
moving through these environments must cope not only with these dynamic objects, but also with
erratic motion including rapid cornering. To overcome these limitations a successful SLAM scheme must
function despite these challenges, and critically, must be able to recover from gross errors in positioning.

The second limitation of many single camera SLAM schemes (Lemaire and Lacroix, 2007; Dellaert
and Kaess, 2006; Eade, 2008; Strasdat et al., 2010) is their high algorithmic complexity—the SLAM
algorithms soon become too costly for real-time operation as the mapped area grows. SLAM methods
with lower cost and complexity should be used for longer term navigation, for example the pose-graph
or submap methods of Mei et al. (2009); Estrada et al. (2005).

The second important observation is that the BoW algorithm is generally very successful at efficiently
recognising when two images show the same scene. This observation is key to the operation of BoWSLAM,
our new SLAM scheme which is designed to overcome these limitation and is described in the following
section.

3 The BoWSLAM Single Camera SLAM Scheme

The previous section described contemporary approaches to single-camera SLAM, and their limitations.
This section describes our new scheme, BoWSLAM, which uses new techniques enabled by adding every
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image to a BoW database to overcome some of these limitations and to allow robust positioning in
visually challenging dynamic environments. In this section we first give an overview of BoWSLAM, then
describe its individual components in detail.

All previous visual navigation systems operate in basically the same way: the camera captures an
image showing part of the same environment that was viewed previously, matches are found between
features in the new image and the same features in previous images, the camera’s new pose is calculated
from these matches, based on the assumption that some of the environment is static, and finally a map is
built from the observed features. BoWSLAM’s basic mode of operation is exactly the same; in addition to
allow long-term robot positioning in real-world environments, where moving objects and erratic camera
motion make navigation difficult, we have the following requirements:

Active loop-closure detection To recover from gross errors, and to maintain a consistent and accu-
rate map for extended periods, the robot must detect when known locations are re-visited, without
any prior knowledge of its position.

Wide-baseline matching The capability to register frames captured from significantly different view-
points is essential where sequences of frames are unusable due to occlusion, motion blur, or erratic
camera motion, and following loop-closure.

Robust estimation Position estimation must be robust in the presence of moving objects and in self-
similar environments.

Multiple position hypotheses Despite robust position estimation, errors will inevitably still occur.
The ability to reject these erroneous position estimates is essential for long-term navigation.

Active loop-closure detection refers to searching the entire map for locations which could be the current
location, so that relocalisation is possible even when the robot is lost, or its position estimate contains
large errors. The leading framework for active loop-closure detection is the BoW algorithm, and to
use this some frames must be represented as ‘Bags-of-Words’. When two frames are matched by the
BoW algorithm, wide-baseline correspondences between them can be obtained cheaply and effectively
from their BoW representations. As wide-baseline matching allows us to efficiently register any pair of
overlapping frames, we can use any such sequence of frames to position the camera. Frames from which
to compute the relative position of the latest frame are selected efficiently using the BoW algorithm and
include loop-closure candidate frames from previous visits to a location, and the most suitable recent
frames, hence allowing recovery after periods of erratic motion or occluded frames. Our BoW scheme,
and these new applications, is described in Section 3.1.

When a frame is captured, feature points are detected and descriptors of the image around these
points are extracted (we use simple image patches centred on corners found using the FAST corner
detector; Section 3.1). These descriptors are used to describe the frame as a BoW. We now use the BoW
database to find both nearby frames, and feature matches with these frames. Given a correct set of
matches between frames, we can compute the relative pose of the cameras via a least-squares approach.
However these feature matches are often contaminated with large numbers of outliers, especially when
moving objects are present or overlap between frames is small. These outliers must be removed before a
least-squares approaches can be applied. A popular method for removing these outliers is the RANSAC
framework, in which the camera pose is computed while simultaneously identifying an inlier set. We
use the BaySAC framework, a RANSAC variant allowing large numbers of low-quality correspondences
to be used efficiently, followed by linear and nonlinear least-squares refinement, to compute the camera
pose. These procedures for computing and refining the relative camera pose are described in detail in
Section 3.2.

Given these relative pose estimates between pairs of frames we can reconstruct the camera’s trajectory
by adding a sequences of these relative poses together. Any errors in one pose however will also affect
subsequent pose estimates. While small accumulated errors can be dealt with via the SLAM framework
(Section 3.4), gross errors will inevitably also occur. In order to maintain consistent maps and accurate
pose estimates it is essential to avoid using these erroneous pose estimates.

To eliminate erroneous pose estimates we compute the pose of each frame relative to each of several
nearby frames, leading to a graph of pose estimates (Figure 8). Two frames can be positioned relative
to each other in many different ways via all of the different paths between them. From this graph we
choose a small subset of possible position hypotheses containing only the most reliable position estimates,
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hence minimising the chance of incorporating erroneous position estimates into our map. This graph of
multiple position hypotheses, and the dual graph in which we model the scale drift that occurs in single
camera SLAM, are described in detail in Section 3.3.

Finally, in order to create a globally accurate map, we optimise a graph of independent relative
position estimates using the efficient TORO framework. The TORO framework, and the generation of
TORO’s input graph are described in Section 3.4.

In summary, BoWSLAM works by representing every frame as a BoW, then using the BoW repre-
sentation to select multiple nearby frames from which to compute relative positions. The latest frame
is positioned relative to each of these frames using the robust BaySAC framework together with corre-
spondences from the BoW algorithm. A subset of these multiple position hypotheses that is unlikely to
contain any gross errors can then be selected and refined to accurately position the camera in a global
map. An overview of the BoWSLAM algorithm is given in Figure 1, and the following sections describe
each component in detail.

For each frame:

1. Add new frame to BoW database:

• Capture new frame from camera

• Detect corners and extract features

• Add image to BoW database

2. Select recent frames for relative positioning, and potential loop closure candidates.
For each of these frames:

• Find BoW feature correspondences with current frame

• Compute pose relative to several previous frames

• Reconstruct 3-D landmark positions (up to scale ambiguity)

• Align landmark positions with earlier observations to resolve scale change and reconstruct
camera positions

3. Update graph to select best pose estimate for every frame

Figure 1: Overview of the BoWSLAM Algorithm

3.1 Feature description and the Bag-of-Words image representation

To reconstruct the position of a frame relative to previous frames we must establish matches between
features in this frame and the same feature seen in the previous frame. The features we match are corner
features found using the FAST corner detector (Rosten and Drummond, 2006); these provide good
repeatability and localisation accuracy while being cheap to extract, taking just 10ms for a 640 × 480
image. The highest-scoring FAST corners are chosen subject to a minimum separation constraint (in
experiments the minimum separation constraint degrades repeatability slightly but is needed to ensure
geometry is well conditioned). To describe the image around these corners we use simple image patches.
Typically patches sized 33×33 pixels are down-sampled to 11×11. The Euclidean (L2) distance between
a pair of these descriptors provides a good measure of their similarity. Examples of the features extracted
are shown in Figure 2.

BoWSLAM uses the BoW scheme described by Botterill et al. (2008). Like other BoW schemes
each image is represented by the set of descriptors that have been extracted from it, each quantised
to the most similar-looking of a representative set of descriptors (Figure 3). This set of representative
descriptors (a ‘dictionary’ of ‘image words’) is chosen so that the same feature viewed in multiple images
should map to the same image word each time, and different-looking features should map to different
image words. Two images with many image words in common contain many similar-looking features,
and therefore are likely to show the same place. These matches can be found very rapidly as comparing
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Figure 2: Interest points found by the FAST corner detector. A minimum separation constraint is needed
to ensure geometry is well conditioned. Image patches centred on each corner are used as descriptors.

images consists simply of comparing their BoW representations, which are essentially sparse vectors of
each word’s frequencies’.

Figure 3: To represent an image as a BoW, we map each descriptor to the nearest image word (the
cluster centres found previously). For each image typically 300 features are mapped to about 150 image
words, out of a total of tens or hundreds of thousands.

A suitable dictionary of image words can be found by clustering descriptors extracted from a training
set of images, so that each cluster corresponds to a particular class of features which should be described
by the same image word. The cluster centres are then used as image words. To cluster the training
set into image words an algorithm such as Lloyd’s algorithm for k-means clustering is usually used,
however this training is slow (taking hours for a reasonably-sized training set) and will work well only
in an environment resembling the training data. Once the dictionary is built there is also the problem
of efficiently finding the closest image word to a particular descriptor.

To solve some of these problems Nistér and Stewénius (2006) propose a hierarchical dictionary: the
training set is clustered into a small number of image words, then each cluster is clustered again into a
small number of smaller clusters (Figure 4). This is repeated until a sufficient number of image words
is found (for example 105 image words if we clustered descriptors into ten subsets at each of five levels).
Clustering is more efficient overall as we are clustering into a smaller number of subsets each time, and
assigning a descriptor to the closest image word is fast: the closest centre at the top level is found, then
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the closest centre from its child clusters is found, etc. until the closest image word is found at the bottom
level.

A further advantage of this hierarchical dictionary is that when a large number of descriptors are
assigned to a small number of centres, clustering a small subset of the descriptors usually gives a good
clustering for the entire set. This observation reduces the time needed to generate an effective dictionary,
allowing new dictionaries to be generated dynamically by clustering the descriptors that have actually be-
ing observed, and hence which will effectively describe the environment that has being explored (Botterill
et al., 2008).

Figure 4: Hierarchical clustering: descriptors (image patches in this case) are clustered into a small
number of large clusters using a fast approximate clustering algorithm. Each cluster is then clustered
again into smaller clusters. Typically this is repeated at about six levels; an example of clusters at the
bottom three levels is shown here—the descriptors on the left are clustered into three smaller clusters,
each of these smaller clusters is clustered again (the first of these is clustered again into the three smaller
clusters shown in the centre), then each cluster is clustered again; the first one gives the six clusters
shown on the right. Each of these cluster’s centres’ forms a image word.

Some image words are more useful than others for identifying if two images show the same place, for
example most images in the dataset in Figure 10 contain image words describing trees and buildings, but
only a few contain a ‘Give Way’ road sign, therefore two images containing words describing the Give Way
sign are likely to show the same place. To take this distinctiveness into account we weight the images’
word-frequency vectors with the heuristic Term Frequency-Inverse Document Frequency (TF-IDF) score
defined as:

wi = log
T

Ci

(1)

where wi is the weight of image word i calculated from T , the total number of images, and Ci the total
number of images where image word i occurs (Nistér and Stewénius, 2006).

The most similar images to a query image are now found by iterating through the BoW database and
comparing each images’ weighted word-frequency vector with that of the query image. The images with
the most similar weighted word-frequency vectors are most likely to show the same place. Recognition
accuracy is high despite geometric information being ignored, and results are robust to small changes in
the scene, due to the large number of features that are compared.

3.1.1 Correspondences from the Bag-of-Words algorithm

A corner feature visible in two frames normally results in each frames’ BoW representation containing
the same corresponding image word. If there is exactly one of a particular word in each image then this
probably corresponds to a matching feature (as used by Cummins and Newman, 2009, for validating
detected BoW matches). If there are a small number (N and M) of a particular word in two images, all
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possible pairs can be considered as candidate matches (‘N −M correspondences’). BaySAC (Botterill
et al., 2009b) can then be used to choose the subset of these that are correct (described in Section 3.2.1).

This BoW feature matching is very fast, however variability in cluster sizes leads to poorly conditioned
correspondences being introduced, while good correspondences are missed when descriptors are split
between two nearby clusters. Typically only 40% of the correspondences found by a brute-force matching
are found by BoW feature matching. To avoid this problem we use the coarser partitioning of the
descriptor space at a higher level of the hierarchical dictionary, and find matches within each cluster
by brute-force descriptor comparison. This is not prohibitively expensive and typically over 80% of the
correspondences found by a brute-force approach are found, with very few additional outliers. N −M
correspondences are used where a feature is sufficiently similar to several others.

Indexing an image with 300 features takes typically 2 milliseconds, and finding correspondences 2
milliseconds, whereas a brute-force matching approach takes 50 milliseconds. BoW feature matching
gives the biggest gains when each image is compared to many others, many landmarks are observed, and
high-dimensional descriptors are used; all are the case in BoWSLAM.

This BoW feature matching method is similar to the kd-tree approach of Beis and Lowe (1999)
which is often used for matching SIFT descriptors (e.g. Cummins and Newman, 2009). BoWSLAM uses
the partitioning found by clustering descriptors rather than an arbitrary partitioning about descriptor
components. Clustering descriptors minimises the number that will fall near the boundary of two clusters,
so unlike the kd-tree approach, by choosing a sufficiently coarse partitioning we do not need to search
neighbouring bins for matches.

Other visual navigation schemes (Nistér et al., 2006; Davison, 2003; Mouragnon et al., 2009) reject
candidate correspondences with multiple potential matches, and/or limit the image area that is searched
for each; however this is not necessary in BoWSLAM where N − M correspondences are used. This
allows BoWSLAM to register each frame to any other frame with many features in common, even in
self-similar environments or when the viewpoint is significantly different.

3.2 Computing relative positions

This section describes how BoWSLAM computes the position of a camera based on a sequence of frames
(the selection of this sequence is described in Section 3.3). First the relative position and orientation of
two frames is estimated (Section 3.2.1). Next, the 3D positions of landmarks observed in these frames
are reconstructed. Finally the true scale of these landmarks, and hence the true motion of the camera
between frames, is computed by aligning these landmark positions (Section 3.2.2).

3.2.1 Relative camera pose computation

The relative pose of two cameras consists of a 3D rotation and translation. From correspondences between
matching features in two frames we can compute this rotation and the direction of the translation,
however the magnitude of this translation cannot be determined without further information.

Algorithms to compute the relative pose from point-correspondences usually work by estimating the
essential matrix E (Hartley and Zisserman, 2003, chapter 9), a 3× 3 matrix encoding the rotation and
translation direction with the property that, for a noiseless correspondence between points p and p′ in
the image ((px, py, 1) and (p′x, p

′
y, 1) as homogeneous coordinates):

p′TEp = 0 (2)

At least five correspondences are needed to estimate E; given exactly five correspondences there are up
to ten possibilities for E, which can be computed from Equation 2 using the method by Stewénius et al.
(2006). E is uniquely determined by eight correspondences, and can be computed from the matrix F
that minimises

C∑

i=1

p′T
i Fpi (3)

for C ≥ 8, using the normalised eight-point algorithm described in Hartley and Zisserman (2003); chapter
11. This linear least-squares method minimises the effects of small errors in point localisation, however
it is sensitive to incorrect correspondences (outliers), which can lead to a completely incorrect solution.
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Outliers are common in BoW correspondences due to mismatched features, self-similar environments,
and moving objects; for this reason inliers must first be identified.

To compute E while simultaneously identifying inlier correspondences BoWSLAM uses the BaySAC
framework (Botterill et al., 2009b). BaySAC is a variant of the popular RANSAC framework for fitting
a model to data points contaminated with many gross outliers (Fischler and Bolles, 1981). In RANSAC
many small hypothesis sets of data points are chosen randomly. Each hypothesis set is used to generate
models. Each model is compared to every data point, and the model consistent with the largest number
of data points is selected. Assuming this model is correct, these data points are inliers. RANSAC can be
slow to find the correct model however when inlier rates are low, and many data points are poor-quality.
BaySAC attempts to solve this problem: instead of choosing hypothesis sets at random, BaySAC aims to
choose the hypothesis set most likely to consist only of inliers at each time. This hypothesis set is chosen
by estimating the prior inlier probability for each data point, then at each iteration choosing the data
points with the highest prior probabilities (assuming data points’ inlier probabilities are independent).
Inlier probabilities are then updated as hypothesis sets are tried, and are found to be contaminated by
outliers.

To estimate E using BaySAC we first estimate each correspondences’ inlier probability by assuming
each point has an equal probability p of having a match in the other image, then dividing this prob-
ability amongst all N − M matches which include this point (giving each correspondence probability
p/max(N,M)). BaySAC then chooses hypothesis sets of five correspondences, calculates all essential
matrices compatible with each hypothesis set and considers each as a candidate for the correct model.
When choosing hypothesis sets and counting inliers the constraint that each feature has at most one
correct match in the other image is imposed.

The essential matrix and inlier correspondences are further refined using top-down outlier-removal
(Rousseeuw and Leroy, 1987): the essential matrix fitting all inlier correspondences is computed using
the normalised eight-point algorithm, then the correspondences least compatible with this matrix are
removed. The essential matrix is decomposed to give four possibilities for the relative camera poses; the
correct relative pose is chosen to be the one leading to most reconstructed points falling in front of the
cameras.

Equation 3 is a poor measure of the error in relative pose however, as it is biased by the distances of
points from the image centre. Ideally we should find the transformation and 3D structure that minimises
the distances between where 3D points are projected into the image and where they are measured
to lie (the reprojection error). This is costly to compute however, instead we minimise Sampson’s
approximation to the reprojection error (Hartley and Zisserman, 2003, chapter 11):

C∑

i=1

p′T
i Epi

(Epi)21 + (Epi)22 + (Ep′
i)

2
1 + (Ep′

i)
2
2

(4)

The relative pose is refined to give the essential matrix minimising Equation 4 by Levenberg-Marquardt
non-linear optimisation. In simulated data this reduces errors by about 30%. 3D point positions can
now be reconstructed up to an unknown scale factor (Hartley and Zisserman, 2003, chapter 10).

An alternative approach would be to estimate the trifocal tensor connecting each set of three frames
(Nistér et al., 2006), or to optimise the transformation over a sequence of frames (Mouragnon et al., 2009).
This would result in a small increase in accuracy at the expense of considerably more computation in
BoWSLAM, as many different positions hypotheses are computed from a large number of possible triples
of frames (Section 3.3).

3.2.2 Resolving Scale Change

Given a feature viewed in two frames, and the relative pose between the two cameras, the 3D position of
that feature can be reconstructed in the local coordinate frame of one of the cameras. As the cameras’
relative position is known only up to an unknown scale factor, this feature’s 3D reconstruction is also
known only up to an unknown scale factor. If the feature is also viewed in an earlier frame we can align
this reconstructed feature with its earlier reconstructed position, hence calculating the ratio of these scale
factors (Figure 5). This scale factor is proportional to the distance between the two camera positions
(the ‘baseline length’), so estimating it relative to the previous scale factor gives us the distance moved
by the camera relative to the camera’s previous motion.
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Figure 5: The point X is observed at time t and t+1. We know the relative pose of these cameras,up to
an unknown scale factor, so can reconstruct X in the coordinate frame of camera t, up-to an unknown
scale factor. If this point was also observed in an earlier frame (t− 1), we can calculate the ratio of the
two scale factors, δ, by aligning the points’ 3D reconstructions.

In the noise-free case, two reconstructions of the same feature in the same coordinate frame, Xi and
X ′

i, will fall on the same ray, i.e. Xi = δX ′
i ∀ i, where δ is the ratio of the two baselines, however

in practice reconstructed points contain substantial errors from several sources, including small errors
in localising features in the image, amplified by stereo reconstruction; small errors in computing the
cameras’ relative poses; and from incorrectly matched features that have not been discarded, as they
were approximately compatible with the relative poses computed earlier. To estimate the scale change
accurately despite these errors we must combine multiple measurements while discarding any outliers.

Given multiple matches between reconstructed 3D points, we first remove outliers by discarding point
pairs not within a certain angle of each other, as these do not fall on the same ray. We then calculate
the scale factor for each pair Xi, X

′
i, giving a set of K scale measurements {δi, i = 1, ...,K}.

The change in scale between two frames is modelled with a lognormal distribution, δ ∼ Log-N (d, g2)
(defined by log δ ∼ N(d, g2) NIST/SEMATECH e-Handbook of Statistical Methods, 2010, section
8.1.6.4). This distribution is a good approximation for observed data (much better than the normal dis-
tribution; Figure 6), and has the useful properties that the product and inverse of lognormally-distributed
variables are also lognormally distributed. d and g are estimated from {log δi} by first removing any
remaining gross outliers using Grubb’s test (NIST/SEMATECH e-Handbook of Statistical Methods,
2010, section 1.3.5.17), then taking d as the sample mean. As we have assumed {log δi} are normally
distributed, then d is approximately normal (d actually has a T-distribution), with variance:

g2 =
1

K(K − 3)

K∑

i=1

(log δi − d)2 (5)

3.2.3 Accumulating relative positions and scales

The previous section describes how to calculate the speed of a camera relative to its previous speed,
however its absolute speed is unknown, as a global scale ambiguity exists when navigating using only a
single camera (without making assumptions about the speed of the robot or the size of observed objects).
For now we assume the first time the camera moved it moved a unit distance; all other motion is now
represented in terms of this distance. Other distances can now be calculated by multiplying sequences
of relative scales (Figure 7). As these relative scales are modelled as lognormally distributed random
variables, then their product sjk is also lognormal:

sjk ∼ Log-N (Djk, G
2
jk) (6)

log sjk ∼ N(Djk, G
2
jk) (7)

where Djk = Dij + dijk, Gjk = Gij + gijk (8)

We have now calculated the relative pose of each pair (Section 3.2) and have parametrised the length
moved at each time by sjk ∼ Log-N (Djk, G

2
jk). Now every frame can be positioned relative to the first

frame’s position by accumulating these relative pose estimates, with lengths sjk given by the median of
the lognormal distribution, eDjk . This method allows a map to be built from any sequence of poses.
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(a) (b)

(c)

(d)

Figure 6: The lognormal distribution is a good approximation for relative scales. Q-Q plots (Thode,
2002) show how well data is approximated by a particular distribution. The quantiles of the data
are plotted against the quantiles of a normal distribution; the closer points are to a straight line, the
better the approximation. For an example of typical real data the log of the scale measurements (a)
is slightly better approximated by a normal distribution than the scale measurements (b); hence the
lognormal distribution is a better model. In simulated data, when stereo disparity errors are higher (the
mean point depth is 50 times the baseline length in this example) the lognormal distribution (c) is a
considerably better approximation than the normal distribution (d). Grubb’s test was used to remove
gross outliers before making these plots.
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Figure 7: The distance between each pair of cameras j and k, sjk, is calculated by accumulating relative
scale estimates, δijk. Note that errors in the estimate of δijk will accumulate in subsequent scale estimates
(and hence scale estimates are correlated). The dashed edges form the edges in the Edge-Vertex dual
E(G).

3.3 Graph-based Representation of Multiple Position Hypotheses

This section describes how wide-baseline feature matching and the BoW algorithm allow BoWSLAM to
compute multiple position hypotheses for each frame, and how the graph these position hypotheses form
is used to select only the most reliable of these position estimates in the presence of gross outliers.

Most contemporary visual navigation schemes track features over consecutive pairs of frames (e.g.
Nistér et al., 2006; Davison, 2003; Eade and Drummond, 2008; Strasdat et al., 2010). If camera motion is
smooth and the frame rate is high enough there will be large overlap between images, and features move
only a short distance, allowing feature tracking by searching a small area where they are predicted to
lie. These assumptions are not true in general however; real video sequences often contain sequences of
frames with insufficient information for accurate matching (for example blank walls), sequences corrupted
by dynamic objects (people walking in front of the camera), or sequences of rapid movement with either
motion blur or insufficient overlap for reconstruction. Ideally each frame should be positioned relative
to a frame with which it has large overlap (and many of the same landmarks visible), significant camera
motion (for well-conditioned reconstruction), and few dynamic objects. These frames are chosen by using
the BoW algorithm to select frames with many features in common with the current frame. From these
candidate frames we choose those that already have accurate position estimates. This BoW sampling
strategy avoids selecting frames to register to that contain too many dynamic objects or are blurred
(as these could not be positioned previously), and avoids frames with insufficient overlap as these do
not generate a strong BoW match. At the same time potential loop closure candidates are chosen—
these must match the current frame at least as strongly as several recent frames. When the camera is
stationary, moving slowly, or revisiting an earlier location, the baseline (the distance between two poses)
can be too short for accurate 3D reconstruction. In this case no new position estimates are calculated
until the camera has moved sufficiently for an accurate position to be calculated. This automatically
keeps the map sparse when repeatedly visiting the same place, an important requirement for long-term
navigation in a bounded environment.

This strategy results in each camera position being computed relative to several (typically one to four)
other camera positions, giving several position hypotheses. These multiple position hypotheses naturally
form a graph, with video frames corresponding to nodes and position hypotheses relative to other frames’
locations corresponding to edges (Figure 8). Each edge has a set of associated 3D landmarks which are
visible in the two frames it connects. Every path connecting two frames in this graph gives a sequence
of relative position estimates; the relative position of these two frames is given by accumulating the
relative position estimates along one of these paths. This graph is similar to the graph in the Atlas
framework (Bosse et al., 2004) with edges representing transformations. In BoWSLAM every video
frame corresponds to a node (as in Newman et al., 2009), so that transformations connect robot poses,
in contrast to Bosse et al. (2004); Eade and Drummond (2007); Strasdat et al. (2010) where nodes
represent local coordinate frames with associated landmarks.

We now have a pose graph, G, with each frame positioned relative to several nearby frames. This
provides a large number of possible paths by which two frames can be positioned relative to each other.
The Atlas framework provides an efficient way to choose a good path between any two frames by assigning
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(a) When a new frame is captured first choose candidate
frames from which to compute relative position hy-
potheses.

(b) Add position hypotheses—the sequence of relative
positions most likely to be outlier-free (highlighted)
is used to position the new frame; another position
hypothesis (dashed) is not used for now.

Figure 8: Camera positions form a graph with edges representing relative position hypotheses. To add
a new frame at time t (dashed) suitable candidates to position it relative to are selected (a). The new
frame is positioned relative to several other frames leading to several position hypotheses (b). Of these
hypotheses the position most likely to be outlier-free is selected. These positions are updated as more
position hypotheses become available.

appropriate quality weights to each edge then finding the ‘shortest’ (highest quality) path between the
frames, however in the case of single camera SLAM, estimates of relative scale must also be taken
into account. These relative scale estimates are dependent on sequences of relative poses, introducing
constraints between pairs of edges in G, which we model using the dual-graph approach described in the
following section.

3.3.1 Dual-graph representation of relative scale

When positioning using a single camera, we find the principal sources of error are gross outliers (usually
due to dynamic environments or from failing to detect remaining outlier correspondences) and scale drift,
as errors in relative positions are proportional to errors in the estimated scale, and errors in orientation
are typically low by comparison. When gross errors in relative pose do occur, they normally lead to
gross errors in the corresponding relative scale estimate. Therefore we aim to choose the path through
the pose graph G that is least likely to contain gross errors in relative scale estimates. Relative scale
estimates are not associated with edges in G however; instead a relative scale estimate is associated
with every pair of edges meeting at a node (Figure 7), i.e. is associated with edges in a new graph, the
‘edge-to-vertex dual’ E(G) of the pose graph G (or ‘line graph’; Balakrishnan, 1997, chapter 2). Vertices
in E(G) correspond to edges in G, and edges in E(G) connect two vertices if the corresponding edges in
G meet at a vertex. Each edge in E(G) has an associated relative scale δijk ∼ Log-N (dijk , g

2
ijk), and

connects vertices corresponding to relative positions from i to j and j to k.
Edges in E(G) are assigned weight g2ijk, then the ‘shortest’ path P between two nodes in E(G)

provides a sequence of relative scales from which the length of one relative position in terms of the length
of the other relative position is estimated. This scale estimate has distribution Log-N (D,G2) where
G2 =

∑
e∈P g2e by Equation 8. Note that P is the sequence of edges minimising G2. The following

observations justify this weighting scheme:

1. If a scale sijk ∼ Log-N (dijk , g
2
ijk) is parametrised from two point sets X and Y , then the scale

computed in the opposite direction has the distribution skji =
1

sijk
∼ Log-N (−dijk , g

2
ijk). Therefore

edges have the same weight regardless of the order or direction they are traversed1.

2. If the measured relative scales were truly lognormal random variables sijk ∼ Log-N (dijk , g
2
ijk),

then P is the path giving an estimate of the log of the true scale with expected error less than the
estimate along any other path.

1When D is calculated along a path in E(G), and rotations and translations are accumulated along a path in G the
direction edges are traversed is relevant, this is implemented in an undirected graph simply by assigning each edge a relative
pose/scale in one direction (the direction of increasing time) then reversing it if traversed in the opposite direction.
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3. Gross errors in relative position and orientation normally lead to few accurately reconstructed
points from which to recover scales, leading to higher g2 estimates, by Equation 5. These edges
will only be used when no better relative position estimates exist.

4. An alternative weighting scheme would be to weight each edge in E(G) by the negative log of its
inlier probability. The shortest path would then be the one least likely to contain an outlier, i.e. the
most robust position estimate. These weights would be equal if P (scale estimate is an inlier) =

e−g2

. While the true outlier probability is hard to measure and is threshold-dependent in real
data, coincidentally this equation does give realistic values of P (no outliers) of about 0.6-0.9 after
travelling for 500 frames without loop-closure, and hence we believe it is a good strategy for
minimising the probability of our position estimates being contaminated by outliers.

As at most a fixed number of relative positions is introduced to G at each time the number of edges
in G, and hence the number of relative-scale-edges in E(G), is proportional to the number of frames, T .
Therefore a shortest path tree can be found in E(G) in time O(T logT ) using Dijkstra’s algorithm. This
shortest path tree gives a good position estimate for every frame and hence a global map. Alternatively
a locally accurate map could be found in constant time by recursing to a fixed depth from the current
node, in the same manner as Mei et al. (2009).

3.3.2 Motion models and scale-drift

While BoWSLAM can position a robot for extended periods without making assumptions about the
robot’s motion, in some visually challenging environments significant scale-drift accumulates and intro-
duces errors into global maps (for example Figure 11(a)). This scale drift arises primarily from a small
number of relative scale estimates where few 3D points are matched between successive frames; these
unreliable scale estimates are incorporated into the map only when no better scale estimates have been
found (usually when cornering rapidly). One solution to reduce this scale drift is to impose a weak
motion model on relative scale estimates. Two possible motion models are proposed in this section. The
first models the acceleration, and the second models the perceived depth of points in the world.

The first motion model is based on the assumption that the camera velocity is approximately constant
over short periods of time. This motion model is implemented by assuming that the relative acceleration
over short period of time is lognormally distributed about zero.

Relative scale estimates are modeled as lognormally distributed variables, which are parametrised
by aligning reconstructed 3D points (Section 3.2.2). When a scale is computed from three frames, i, j
and k, which are temporally close, we assume these relative scales are lognormally distributed about the
scale corresponding to zero acceleration as follows:

δijk ∼ Log-N (log
∆jk

∆ij

, G2
MMmax(∆ij ,∆jk)) (9)

where ∆ij is the time difference between frames i and j, and GMM controls how tightly speeds are
constrained. This distribution is combined with the distribution for δijk from aligning points. GMM

is chosen so that when many points are observed, the scale from observing the points dominates, and
when few are observed, the motion model dominates. This motion model is weaker than other single
camera SLAM motion models as only the camera’s relative acceleration is constrained. Even so, like
other SLAM schemes, it could potentially limit camera acceleration after the camera has slowed. In this
circumstance however, position estimates from many recent frames are normally available, as there is
high overlap between consecutive frames when the camera moves slowly. If sufficient 3D structure is
aligned over any of these triples of frames then this scale estimate will dominate.

This motion model reduces scale drift, but does not eliminate it; errors will still accumulate. An
alternative motion model is based on the observation that reconstructed points in the world typically
have depths in a particular range, for example 0.5m to 20m for a pedestrian outdoors. The mean
depth of reconstructed points is proportional to the baseline length (which is assumed to be lognormally
distributed), therefore by modelling the depth of reconstructed points with a lognormal distribution and
combining this estimate with the depths from SLAM an absolute constraint on scales can be imposed.
As sequences of scales are all dependent (by Equation 8), an uninformative distribution can be used,
leading to many small updates that together eliminate scale drift over long sequences of frames. This
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constraint is similar to constraints on the depth of observed points imposed by some other single camera
SLAM schemes (Davison, 2003; Lemaire and Lacroix, 2007).

3.4 Loop closure and map optimisation

Loop closure in a graph-based map is very simple—an edge is added in the same way as for other relative
position hypothesis. However when a loop is closed and a new global map is computed a break in a
continuous chain of positions in the middle of the loop often forms when poses for frames at either side
of the break are computed via different paths (Figure 9). This break will usually be far from the root
edge from which the graph’s shortest path tree is generated so a locally accurate map can always be
constructed by setting the root near to the current robot position, however sometimes a global map is
required.

(a) Loop closure detected (b) Position estimates updated

(c) t-spanner optimised

Figure 9: When loop closure is detected the latest frame can be positioned relative to a much earlier
frame (a). After loop-closure, the ‘best’ position estimate for each frame is updated. This improves the
position estimates of a sequence of nearby frames relative to the latest frame (b). When a global map is
required a t-spanner of good position estimates preserving cycles is selected and optimised, closing any
distant gaps (c).

Our goal is to compute an accurate map from a set of relative pose estimates. Several solutions have
been proposed for the case when errors in relative poses are Gaussian and independent (Section 2.1).
We use the 3D version of the TORO framework (Grisetti et al., 2007a) to generate global maps.

The TORO framework is based on on earlier work by Olson et al. (2006). Olson et al. formulate
the SLAM problem as a network of robot poses connected by uncertain relative pose estimates, then
find the robot poses minimising the total residual in relative positions. Solving this problem via global
methods such as Levenberg-Marquardt nonlinear optimisation is not computationally feasible, and lin-
earising the problem and solving via a Kalman Filter can lead to significant artefacts from linearisation.
Instead an approximate nonlinear solver based on Stochastic Gradient Descent is used. This method
starts from an approximate initial solution, selects one constraint (relative pose estimate), calculates the
adjustment to the robot poses needed to reduce the error in this constraint, then applies this adjustment
to each robot pose. Instead of choosing constraints at random, as in Stochastic Gradient Descent, each
is considered in turn. This, together with the structure of the problem (updates usually only affect
temporally close/subsequent positions) means that updates can be applied to a tree of stored updates,
so that sequences of successive nodes can be updated efficiently without having to iterate over them.
This update is repeated for each constraint on each iteration. Updates are increasingly damped on each
successive iteration, and iterations continue until the total residual is low. The effect of each iteration is
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to partly close gaps in loops, distributing the error around the loop.
In the TORO framework (Grisetti et al., 2007b) this method is improved by building an update tree

based on spatial rather than temporal proximity of nodes. This reduces the number of nodes that must
be updated in most environments, particularly where a robot repeatedly visits the same area.

These approaches work in 2D, however they do not easily generalise to 3D as 3D rotations are
not commutative. Instead, for the 3D version of TORO (Grisetti et al., 2007a), the translational and
rotational components of motion are separated and updated alternately. Errors in rotation are distributed
over sequences of relative poses by spherical linear interpolation.

There are two issues with using TORO with BoWSLAM’s maps however, the first is that TORO does
not model outliers, and one bad relative pose estimate can corrupt the entire global map. Optimising the
entire pose graph G rarely results in a map resembling the ground truth, so instead we must select an
outlier-free spanning subgraph of G. The most important property of this subgraph is that large cycles
in G should be preserved. A suitable subgraph with this property is known as a t-spanner, St(G), defined
as a spanning subgraph where two nodes separated by a distance k in G are separated by no more than
tk in St(G). In a weighted graph with e edges a t-spanner with low total cost (close to the minimum
possible) can be found efficiently in time O(e log e) using the algorithm by Althöfer et al. (1993). A value
of around 20 for t gives a subgraph consisting of the minimal spanning tree plus a small number of edges
sufficient to preserve cycles larger than t; this is the subgraph we optimise using the TORO framework.

A second problem with using TORO for single camera SLAM is that scale drift means that the
independence assumption between poses does not hold. TORO distorts graphs containing significant
scale drift. We plan to modify TORO to incorporate a cyclic constraint on scales in the same way that
rotations around cycles are currently handled: around a cycle C,

∑
(ijk)∈C dijk = 0. For now we impose

this constraint via a Singular Value Decomposition (SVD), which has poor complexity, but in practice
is fast (a few milliseconds) in t-spanners as long sequences of edges typically belong to the same set of
cycles, so can be temporarily replaced with a single edge. Scale drift within cycles still leads to small
distortions in optimised maps.

The final requirement for optimisation are variances for each relative pose (full covariances are not
used by TORO in 3D but could be estimated in the same way). These are estimated by assuming
pose estimation is locally linear, then fitting a simple model to errors in simulated noisy data. While
many factors contribute to these errors, the number of inliers found, D (pose estimation has D− (5− 1)
degrees of freedom), and the uncertainty in point localisation (σL, about 0.69 pixels for the FAST corner
detector) account for most of the error, giving σ = K σL√

D−4
with K ≈ 28 for errors in orientation, and

K ≈ 40 for errors in translation direction. Approximating the lognormally distributed scales with normal
distributions and scaling the errors in translation appropriately gives the required variances.

Other authors (Konolige et al., 2009; Eade and Drummond, 2007) use the condition of the Jacobian
matrix from fitting a transformation to inliers to estimate transformation quality; in BoWSLAM however
errors in position and orientation are usually caused by remaining outlier correspondences, either from
movement in dynamic environments, or when a poorly-conditioned or small inlier set is found. We have
found the Jacobian is often better conditioned when more outliers are present, so is a poor measure of
the quality of a transformation.

4 Experimental results

In this section we demonstrate that BoWSLAM can robustly navigate difficult environments with three
datasets, each processed off-line on a computer with a 3GHz Intel Core 2 Duo processor.

The first dataset is captured at 2.8Hz from a handheld camera in a suburban environment (Figure 10).
Images are greyscaled, normalised, and down-sampled to 640× 426. After travelling 1.6km the camera
is stopped, then restarted elsewhere. A couple of minutes later the new path re-joins the original path.
The sequence includes many pedestrians and cars, and three frames show only of the side of a passing
bus.

Without assuming any motion model BoWSLAM successfully positions the robot along the first
path, producing locally consistent maps (Figure 12a). Loop closure is detected every time the path
re-visits an earlier location. When the camera is stopped and re-started a new map component is started
(Figure 12b), however significant scale drift accumulates during rapid cornering. When the new path
returns to a previously visited location loop-closure is detected and the maps are fused. The scale from
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Figure 10: Frames from the Suburban dataset, covering 2.5km over 25 minutes. Dozens of pedestrians
and cars pass by, and one sequence of three frames is completely obliterated by a passing bus.

the first component is propagated along the new path, however a loop-closure opportunity was missed
when the camera travels in the opposite direction to the previous visit, leading to large uncorrected scale
drift, as seen on the right of Figure 12c). This loop is hard to detect as features common to both frames
are visible from very different angles; even viewpoint-invariant SURF descriptors are not sufficient to
detect this loop closure.

Initially a framerate of 16Hz is maintained; after 24 minutes this has dropped to 11Hz; still almost
four times the rate images were captured. Correcting scale drift in 1546 edges, around 7 cycles, by SVD
takes just 60 milliseconds.

To produce the optimal map in Figure 11 a 25-spanner of the pose graph is found. This contains 14
more edges than the shortest path tree used to find locally consistent maps (Figure 12). A reasonable
map with only small gaps is obtained after 500 iterations (6 seconds). After 20 000 iterations (234
seconds) the global error is reduced four-fold and gaps are completely closed. This slow convergence is
due to variation in relative position variances; by setting all variances equal a reasonable map is obtained
in 50 iterations. While most details of the ground-truth track from GPS are recreated, in two places (at
either end of the second track) uncorrected scale-drift corrupts the position estimate.

Table 1: RMS errors in global maps optimised by TORO. Errors are relative to GPS positions after
scaling and aligning maps; RMS errors in the non-differential GPS position are estimated to be 5m.
These figures are parametrisation-dependent and mainly reflect the amount of scale-drift present. The
total track length is 2.5km.

Motion model RMS error
No motion model 198m
Constrained acceleration 83m
Constrained depths 56m

We have also processed this dataset with the two motion models proposed in Section 3.3.2. The
first of these motion models, constraining accelerations, reduces scale drift throughout the map (Fig-
ure 11(b)), however some scale drift still distorts the map during tight, rapid cornering. The constraint
on acceleration does not affect BoWSLAM’s ability to stop or start moving at the three locations where
the camera is stationary.

The second motion model, constraining the depths of reconstructed points, greatly reduces scale drift
and all features of the original map are accurately reconstructed, however some distortions are introduced
where the camera passes through a narrow passage where the point depth model does not reflect the
true point depths (Figure 11(c)). The RMS errors between these three runs and the GPS ground-truth
are given in Table 1, showing that both motion models improve BoWSLAM’s accuracy.

The second dataset demonstrates BoWSLAM navigating a typical indoor environment. The dataset,
from the University of Alberta (The Robotics Data Set Repository (Radish), 2003), consists of a 75m
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(a) Global map, no motion model. Most fea-
tures of the path are reconstructed accurately,
except at either end of the second trajec-
tory where loop-closure events are missed and
scale-drift accumulates.

(b) Motion model constraining acceleration. Many artifacts
eliminated, although scale drift still occurs at the start
of the second track.

(c) Motion model constraining allowed scale of the
world. Scale drift is greatly reduced, although the
map is distorted where the true scale of the en-
vironment does not reflect the depth distribution
assumed by the motion model.

(d) Ground truth data from GPS

Figure 11: Maps of robot poses compared with ground truth from GPS, from the Suburban dataset
(Figure 10). The path starts at S and traverses the large loop twice, with various diversions. After 16
minutes the camera is stopped, then restarted at R. Later the original path is re-joined.
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Figure 12: The robot needs to identify which frames have reliable position estimates as it explores. To
do this it maintains maps where each frame is positioned along the ‘shortest’ path back to a root node
(the first node in this example). These maps are locally consistent (near the root) but contain significant
scale drift and gaps in loops; these are corrected when a globally accurate map is optimised using TORO.

Figure 13: Frames from the University of Alberta CS Centre dataset—a 512 frames captured around a
75m indoor loop from The Robotics Data Set Repository (Radish) (2003).

rectangular loop around corridors and landings. 640 × 480 greyscale images were captured every 15cm
from a wheeled robot (Figure 13). Images are processed at 16Hz, corresponding to a robot velocity of
2.4m/s. Positioning is accurate along straight corridors, despite a large number of self-similar features,
and features reflected from the uneven floor. Again when cornering rapidly the rapid rotation relative
to forward motion make tracking scale difficult, as few points with accurate 3D positions are tracked
into subsequent frames (using a wide-angle lens would greatly reduce this problem). Positions of a few
frames with gross errors are visible near corners; these errors are successfully avoided when computing
subsequent positions.

When the start point is revisited loop closure is detected.Optimisation with the TORO framework
produces the map shown in Figure 14, needing 50 iterations and 0.08 seconds. Artefacts from the errors
during rapid cornering are still visible, in particular the zig-zagging where a sequence of alternate frames
is positioned relative to two different earlier frames.

The final dataset demonstrates BoWSLAM navigating a challenging outdoor dataset. The dataset
is captured from a Contour HD mountain bike helmet camera, and features full six degree-of-freedom
motion, large changes in scale, rapid cornering, erratic motion over rough ground, and sequences of
frames with motion blur (Figure 15). 1.5km are covered in 5 minutes at speeds ranging from 5 to 30
km/h. The original video consists of frames sized 1280×720 captured at 30Hz; image features accelerate
from zero to 140 pixels-per-frame across sequences of three frames, and sequences of up-to six consecutive
frames contain motion blur.

One-in-three frames from the original video are used, downsampled to 640 × 360. A motion model
constraining the world’s scale, and scale- and rotation-invariant SURF descriptors are used; these are
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necessary to register poor quality images despite rapid changes in scale, but cut performance to around
two frames-per-second.

BoWSLAM successfully recreates the double-loop, and many features of the trajectory, despite nu-
merous small errors (Figure 16). Overall the map is warped from many small errors in relative orientation,
and errors in scale when the camera moves between forest and open areas. Corrections around loops
mean changes in altitude are recreated successfully, despite the warped map (Figure 17).

Figure 14: Global map of robot poses compared with ground-truth, University of Alberta dataset (Fig-
ure 13), optimised with TORO. A scale is applied to match the ground-truth.

Figure 15: Frames from the Helmet Camera dataset, a challenging sequence characterised by erratic
motion and motion blur.

4.1 Long-term real-time operation

A breakdown of typical processing times is given in Figure 18. Note that once the inlier correspondences
and epipolar geometry are determined, the positioning and mapping parts of the algorithm are very
fast. Also computing four position hypotheses per frame rather than one only increases the total cost
by about 50%. For this dataset, using RANSAC instead of BaySAC almost doubles the time needed to
find essential matrices (increasing the total time by 20%), although this is parametrisation-dependent.

For the first few thousand frames the execution time is dominated by constant-time operations:
extracting features from each frame and computing positions relative to around four nearby frames.
However, the following parts of BoWSLAM currently have higher complexity in the number of frames
T , and will eventually become the most expensive operations:
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(a) BoWSLAM’s optimised map of the Helmet
Camera dataset.

(b) Ground-truth data from GPS.

Figure 16: Optimised map of the Helmet Camera dataset. BoWSLAM successfully re-creates the struc-
ture of the trajectory, although errors accumulate around tight corners and distort the optimised map.

Figure 17: Camera altitude on the Helmet Camera dataset from GPS, from Google Earth’s Digital
Elevation Model (DEM), and from BoWSLAM (shifted and scaled to match the range of the DEM
data). BoWSLAM’s altitude estimate contains systematic errors from a slightly warped map, however
details are recreated more successfully than by GPS, where the same location has a 30m height difference
on two visits (although differential GPS would eliminate this error).

• Loop closure takes time up to O(T logT ) (Section 3.3)

• Finding BoW matches takes time O(T ) (comparison with every other frame)

• Building a new BoW dictionary (clustering) takes time O(T log T ), although per-frame this is only
O(log T )

• Finding a t-spanner for optimisation by TORO takes time O(T logT ), and TORO takes time Ω(T ),
although this is performed only occasionally when a globally-accurate map is needed.

For long-term operation, constant time costs are necessary, however in a bounded environment a robot
will eventually map everywhere it ventures, reducing the SLAM problem to a much simpler localisation
problem. In the mean time the costs listed here could still be reduced further: BoW matching can be
speeded up (to O(log T )) by clustering the BoW image representations and only searching in nearby clus-
ters (Fraundorfer et al., 2007). BoW clustering can be avoided entirely once a dictionary appropriate for
the environment is found; alternatively for some environments a ‘general purpose’ dictionary (Cummins
and Newman, 2008a), could be used, avoiding the need to cluster entirely.

Memory usage is linear in the number of frames and is dominated by storing descriptors, requiring
around 40KB per frame. This gives about 25 000 frames/two hours of operation per GB of memory. This
could be reduced greatly if correspondences directly from the BoW representation were used (as proposed
in Section 3.1.1)—this would remove the need to store descriptors once a BoW dictionary representative
of all the environments that might be encountered was found.
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Figure 18: Breakdown of execution time per frame. Computed on University of Alberta dataset, excludes
rendering of maps and TORO optimisation.

4.2 Discussion

BoWSLAM can navigate in three dimensions with very few assumptions about motion, however a motion
model helps to reduce scale drift. Ideally rotation-invariant descriptors should be used, as some robots
(for example climbing robots) may visit the same location with a different orientation. Rotation-invariant
SURF descriptors perform as well, or better than patch descriptors, however they are currently too costly
to extract in real-time.

We attempted to parametrise MonoSLAM (Davison, 2003) to work on the University of Alberta
dataset, however features near to the camera move too far between frames to be tracked (or when
allowed motion is increased the tracking jumps between nearby similar-looking features). When a corner
is reached, rapid feature motion causes tracking to fail, and the estimated path continues straight ahead
due to the constant velocity motion model.

Like all SLAM schemes with global loop-closure detection, there is a risk that BoWSLAM may close
loops incorrectly in self-similar environments, corrupting part of the map, however this is only a problem
if the geometry of the scenes is also compatible. So far the only incorrect loop closures observed have been
in simulated data, where the same image is observed in different locations. Other schemes (Cummins
and Newman, 2009; Konolige et al., 2009) have also found geometric constraints sufficient to prevent
false loop closure. In addition, if incorrect loop closure could be detected the damage could be undone
simply by deleting the incorrect link.

5 Conclusions

This paper describes BoWSLAM, a scheme enabling real-time navigation of dynamic environments using
a single camera alone. An accurate map is generated after travelling 2.5km over 25 minutes; considerably
further than the tracks over which previous single camera SLAM schemes have been demonstrated.
BoWSLAM demonstrates that autonomous mobile robots may be positioned for extended periods in
large-scale environments using just a single camera.

Three innovations make this possible. Firstly, the use of the BoW algorithm, together with BaySAC,
for fast, wide-baseline feature matching. This enables positioning despite substantial camera movement
and outliers from moving or repeated features, and is necessary when computing position estimates
relative to more distant frames. Secondly, the BoW algorithm is used to select good candidate frames
from which to compute positions, this allows positioning to continue despite sequences of frames being
unusable, for example due to moving objects. Thirdly, a graph-based representation of multiple position
hypotheses allows subsets of good position estimates to be found, despite the presence of gross outliers.
Scale estimates are modeled as a dual graph, which is optimised to correct scale drift when loops are
closed.
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6 Future development

We have demonstrated BoWSLAM’s robustness to gross errors and challenging environments, however
there are several areas where accuracy can be improved. Firstly, scale drift is still a large source of errors
in maps, particularly when navigating by dead-reckoning (far from previously-visited locations). One
obvious solution is to incorporate measurements from additional sensors; in particular the complementary
measurements from low-cost IMUs (like those found in many modern phones). An alternative solution
however, on which we have carried out some preliminary work (Botterill et al., 2009a), is to extend the
high-level representation of each frame by using the BoW database to learn and recognise classes of
objects. Measurements of the size of these objects can then be used to estimate the true scale of the
world.

We also plan to improve positioning accuracy by using a bundle adjustment-based approach (Triggs
et al., 1999; Mouragnon et al., 2009). Position estimates over good sequences of frames could be refined,
and information from multiple good tracks could be combined (Section 3.3), however a better approach
may be to focus on those regions with the highest uncertainty.
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