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ABSTRACT 

 

3D reconstruction from multiple cameras is challenging in 

some environments because of ambiguous matches between 

similar-looking features. These ambiguities can be resolved 

by projecting a structured light pattern into the scene, and 

detecting points in the light pattern in each image. Robust 

detection of the structured light pattern is hard because of 

variations in object colour and lighting within the scene, 

however for specific applications, training data can easily be 

collected and labelled, enabling the detection problem to be 

solved using machine learning techniques. We demonstrate 

the application of a Support Vector Machine (SVM) to 

detect laser light patterns projected into images of vines, 

using Feature Subset Selection to design a feature descriptor. 

A descriptor is computed for every candidate pixel, and the 

SVM determines if each descriptor is part of the laser line 

pattern. On test images, the proposed detector achieves 

99.4% precision at 90% recall, outperforming a detector 

which uses only one pixel’s colour.  

 

Index Terms— Structured light, Feature detection, 

Support Vector Machine, Machine learning, Feature Subset 

Selection 

 

1. INTRODUCTION 

 

Complex scenes can be reconstructed in 3D by capturing 

multiple images, and using a multi-view 3D reconstruction 

algorithm, such as bundle adjustment or a dense stereo 

algorithm. These algorithms struggle to reconstruct some 

scenes however, often due to ambiguities in matching 

similar-looking objects between multiple views. To improve 

the robustness of these reconstruction algorithms, additional 

3D information captured with a structured light 3D imaging 

system can be used. Structured light systems work by 

projecting a pattern of light into the scene, identifying the 

light pattern in images of the scene, and then using 

triangulation to reconstruct the 3D positions of points in the 

pattern [1].  

Structured light has long been used as a stand-alone 3D 

imaging technique, with either laser-generated patterns, or 

patterns projected from a digital projector [2]. Systems using 

laser patterns (such as Microsoft’s Kinect [3]) use a camera 

with a narrow bandpass filter to image only the laser light 

reflected from the scene. Projector-based systems require the 

objects to be illuminated only (or predominately) by the 

projector, and generally make strong assumptions about the 

colours or reflectance properties of objects [4, 5]. For 

augmenting a vision-based multi-view 3D reconstruction 

system, it is desirable to detect the structured light pattern in 

the same images that are captured for the 3D reconstruction. 

Detecting the structured light pattern directly from these 

images avoids the need for additional cameras, and the 

additional bandwidth, synchronisation and calibration which 

these would require.  

To augment an images based 3D reconstruction system in 

this way, the structured light pattern should be visible in the 

images even in the presence of ambient light or machine 

vision lighting. In many environments, planes of coloured 

light projected by line lasers are ideal for this purpose.  

One application for the combination of vision and 

structured light is for building 3D models of complex 

branching plants. Our particular application is a tractor-

mounted robot which images vines [6]. Three high 

resolution cameras image the vines and the wire trellis over 

which they grow, and a model-based bundle adjustment 

framework is used to reconstruct their 3D structure. The 3D 

reconstruction requires vines and wires to be matched 

between different images, however different vines and wires 

appear similar, so these matches are often ambiguous. To 

address these ambiguities, red and green laser lines are 

projected into the scene. Every pixel where the laser line 

intersects a vine or wire provides a 3D point, which enables 

 

Figure 1: Examples of points on a red and green laser 

light pattern projected on vines and wires (top), and 

image points with similar colour because of image 

noise, variation in the scene, and demosaicing artefacts 

(bottom). 

 



matching ambiguities to be resolved, and also aids the 3D 

reconstruction [6].  

The challenge addressed in this paper is how to detect the 

structured light points in the colour images. A good detector 

must be robust to the variation in colours and reflectance 

properties of objects, and variation in laser intensity and 

light levels across the scene [7]. This is a hard problem in 

general, but for specific applications, large amounts of 

training data can easily be collected. The problem of 

detecting which pixels show the laser line can then be 

framed as a machine learning problem. In this paper we 

demonstrate that this problem can be solved efficiently and 

effectively by training a Support Vector Machine (SVM) to 

classify pixels. A set of candidate pixel locations (i.e. red or 

green pixels) is selected from each image; a descriptor (a set 

of nearby pixel values) is extracted from the region around 

each candidate pixel; and an SVM is applied to determine 

whether each candidate pixel is part of the laser line pattern. 

On test images, this approach finds 90% of detected laser 

line points with a false positive rate of 0.5%. The methods 

described could easily be applied in many other application 

domains. 

 

2. DETECTING STRUCTURED LIGHT PATTERNS 

 

Most contemporary structured light systems use a dedicated 

camera and bandpass filter [8, 1, 9] to image only a laser 

light pattern. Finding the pattern consists of simply finding 

maxima in the image [10]. More recently, systems have been 

developed which project complex “coded light” patterns into 

the scene, and these patterns are detected from colour 

images. These patterns include patterns of continuously 

varying hue, and patterns of dots or lines from a discrete set 

of colours. If the only illumination source is the projector, 

and the objects which are imaged have uniform colour and 

approximately Lambertian reflectance, then these patterns 

can be identified from the pixel’s colour [11, 2]. Patterns of 

dots or stripes can be detected more robustly by using 

dynamic programming to use knowledge of the pattern to 

resolve ambiguous pixels [5], however this requires the 

order of dots or stripes in images to match (locally) the order 

in which they are projected, which is not true for complex 

3D scenes. Systems which capture multiple images with 

different patterns are more robust, and have higher 

resolution, but are unsuitable for dynamic scenes [2].  
A line laser is used in combination with colour vision for 

obstacle detection for mobile robots by Ta et al. [12] and by 

Chang et al. [13]. In both cases the line is detected by 

applying a threshold to the pixel colours. The laser lines are 

clearly detected on many indoor objects. 

The vine imaging robot previously used a threshold-

based approach to estimate laser line points [14], but the 

method was not sufficiently robust to small changes in vine 

colour and light levels, and often missed laser line points on 

smaller or darker vines. The aim of this research is to 

improve the previous system by designing a detector which 

uses the region around the laser line, in addition to the laser 

line colour. 

 

3. MACHINE LEARNING FOR STRUCTURED 

LIGHT PATTERN DETECTION 

 

Our goal is to design a binary classifier for testing whether a 

pixel in an image of vines is part of a laser line structured 

light pattern, based on the pixel’s colour, and the colours of 

pixels in its neighbourhood (Figure 1). This is a classic 

supervised machine learning problem, where large numbers 

of labelled examples of structured light pixels are given by 

manually labelling images (Figure 2). We use a Support 

Vector Machine (SVM), although many alternative machine 

learning algorithms could be used instead. Across a range of 

standard datasets, SVMs show classification performance 

comparable with other leading machine learning algorithms, 

including Neural Network and Random Forests [15, 16]. 

SVMs are widely used for object detection and feature 

classification in computer vision, for example by entrants in 

the PASCAL Visual Object Class challenge for deciding 

whether a descriptor of a region of an image shows an object 

[17], and for classifying land cover in satellite images [18]. 

 

3.1 Support Vector Machines 

Given a set of feature vectors divided into two classes, an 

SVM finds a splitting surface which maximises the 

separation between the classes. The linear SVM finds the 

planar surface which maximises the separation between the 

classes. To make the SVM robust to mislabelled training 

data, and overlap between classes, the splitting surface is 

chosen so that some fraction of examples may be 

misclassified. For the ν-SVM formulation we use, the 

hyperparameter ν controls the fraction of the training data 

which may be misclassified [19].  

More complex splitting surfaces can be found by 

transforming the feature vectors to a higher dimensional 

space using a nonlinear kernel function, with a linear SVM 

 

Figure 2: Part of a training image (left) with red 

(marked in magenta) and green (marked in cyan) laser 

line points labelled by hand (right). The pattern on the 

background is irrelevent so is masked out.  

 



applied in this higher dimensional space. While many 

different kernel functions can be used, the Gaussian Radial 

Basis Function (RBF) kernel often performs well in practice 

[15, 20], as it can approximate a wide range of smooth 

splitting surfaces. The curvature (complexity) of the splitting 

surface is controlled by setting the hyperparameter γ. 

To avoid overfitting the training data, cross-validation 

should be used to set the hyperparameters [20]. In two-fold 

cross-validation, the SVM is trained on half of the training 

data, and validated on the other half. This is repeated with 

the two halves of the training data swapped, and the 

validation scores are averaged. A brute-force search over the 

space of hyperparameters is used to find a parameterisation 

which maximises the cross-validation score, i.e. where the 

SVM generalises well within the training set. The SVM is 

then retrained on the entire training set. 

 

3.2. Features for laser line detection 

 

The SVM is used to identify which of a set of candidate 

pixels from each image are part of the laser line pattern. It is 

unnecessary and infeasible to apply an SVM to classify 

every pixel in an image. Instead, a fast check is first applied 

to identify candidate pixels which could possibly be on the 

laser line pattern. In our system, the lasers are aligned so that 

the laser plane is perpendicular to the scanlines. For the red 

laser, only extrema in the red colour channel along each 

scanline are considered as candidates pixels. In 12 labelled 

training images, there are 828 662 extrema in the red 

channel, of which 5806 are labelled as laser line. By 

considering only pixels where the red component is 25 

greylevels greater than the green component, 94% of the 

negative examples, but only 0.4% of the positive examples 

can be excluded. This criterion enables us to select a subset 

of approximately 4500 candidate pixels per image to 

evaluate using the SVM, of which about 500 are laser line 

points. In the labelled training images, candidate pixels 

which have been labelled as laser line (Figure 2) are used as 

positive training examples, and other candidate pixels are 

used as negative training examples (Figure 3). 

The feature vectors used are based on the pixel values in 

a region around each candidate pixel. A patch of the image 

could be used, but high dimensional patch descriptors are 

unlikely to give good performance, because the quantity of 

training data required to train a high-dimensional classifier is 

too large [21]. We are interested in detecting very small 

regions of laser light, e.g. one or two pixels high on wires 

(Figure 1), and intuitively, pixels far from the laser line point 

should not affect the classification, so we restrict the 

descriptors to a row of 9 pixels centred on the candidate 

pixel. As there are significant levels of noise in the image 

(with standard deviation approximately 5 greylevels), the 

same row in images convolved (blurred) with Gaussian 

filters of size 1, 2 and 4 are included.  

SVMs perform best when every feature is normalised to a 

range of about zero to one [20]. It is also desirable that the 

detector is invariant to changes in illumination (due to 

position with respect to the lasers and lights, from shadows, 

and from variations in camera settings and configuration). 

To address both of these criteria, the descriptors are 

normalised by dividing by the extreme value in the red 

channel. 

 

3.3. Feature subset selection 

The proposed feature vectors still have considerable 

redundancy, because the colour values are interpolated from 

a Bayer image, and pixels in blurred images are a linear 

combination of other pixels. In addition, they still have high 

dimensionality (80D for a 9 pixel long row). Feature Subset 

Selection methods aim to find a subset of input features so 

that a classifier trained on this subset will generalise better 

than a classifier trained on all of the features, and will be 

more computationally efficient.  

Sequential Forward Selection [22] is a simple and 

popular feature subset selection method: the method starts 

from an empty feature set, then on each iteration adds the 

feature which increases the cross-validation score the most. 

Alternative feature selection methods can be applied, e.g. 

using heuristics such as genetic algorithms, or a brute-force 

search over all subsets, however these methods are 

considerably more costly (or computationally infeasible), 

and can lead to additional overfitting problems [21]. 

As the laser line detector should be symmetric, features 

are added in pairs—each pixel location is added along with 

the same pixel location from the opposite side of the 

candidate pixel. 

 

 

Figure 3: Candidate points for red line laser pattern. 

Positive examples (as identified in manually labelled 

images) are marked with green dots; negative examples 

(all other candidate points) are marked in red. 

 



4. EXPERIMENTAL RESULTS 

 

Red and green laser light points are hand-labelled in 18 

images of vines, to give two training sets of 6 images each 

(for two-fold cross validation), and one test set. The images 

include vines, wires, metal and wooden trellising, calibration 

patterns, and junk such as dead leaves and string. Training 

images are also reflected horizontally to generate more 

training samples, and ensure that the detector is symmetric. 

The training data contains 81 076 red candidate pixels (of 

which 12% are positive examples) and 29 560 green 

candidate pixels (21% positive examples).  

The hyperparameters ν and γ, and the best feature subset 

(by Sequential Forward Selection) are found by brute-force 

search to maximise the two-fold cross-validation score. The 

classification accuracy on the test set for the best descriptor 

found for each dimension, the best descriptors overall, and a 

descriptor using all 80 features are compared in Figure 4. 

Descriptors using more than 9 features offer no significant 

improvement in classification accuracy. A 15D descriptor 

for the red laser was selected by cross-validation score, 

however a shorter descriptor could be used with a negligible 

drop in performance. Using all 80 features gives similar test 

performance to the best feature subsets, indicating that the 

SVM does not overfit the data even for this long descriptor, 

but that the long descriptor is not necessary. 

The SVM finds a classifier which minimises 

classification error, but in practice false positive detections 

are a more serious problem than missing positives, as false 

positives lead to incorrect 3D measurements, which cause 

feature registration to fail. The classifier can be tuned to give 

a higher precision at lower recall by using a different 

threshold for the SVMs decision function [23]. Precision-

recall curves for the best classifiers found are shown in 

Figure 5. The descriptors chosen by feature subset selection 

clearly outperform descriptors based on colour alone—the 

red laser detector can achieve 99.4% precision at 90% 

recall, whereas the colour-based classifier achieves only 

88.0% precision. 

Sometimes the nonlinear RBF kernel is unnecessary, and 

a linear SVM will provide good results. We also trained a 

linear SVM and descriptor for each colour, however the best 

descriptors found have comparatively poor performance, 

with 70% and 130% more misclassified candidate pixels on 

the test set for the red and green laser patterns respectively. 

 

4.1. Results on a vine imaging robot 

 

We integrated the proposed laser line detector into the vine 

imaging robot’s vision system. The geometry of the laser 

line can be used to restrict the search space for laser line 

pixels, and to eliminate some false detections. Laser line 

detection takes about 40ms per frame on one core of an Intel 

I7 2.93GHz processor. On the first 10 sets of three stereo 

frames of a video sequence there are 220 red or green laser 

line points visible on wires. 193 of these are detected by the 

new detectors, but only 132 with the old detector based on 

one pixel’s colour alone. Neither detector has any false 

detections on wires. Matching wires between views is 

challenging, as they all appear similar [6]. These results 

indicate that the new laser line detector will improve the 

robustness of the 3D reconstruction system. 

 

5. CONCLUSIONS 

 

This paper has described how an SVM can be used to detect 

a laser line structured light pattern in colour images. A short 

descriptor based on pixel values around candidate pixels is 

designed by Feature Subset Selection, and is classified using 

an SVM. In test images, the proposed detector returns 90% 

of laser line points with 99.4% precision. The detector will 

be used on a vine imaging robot, where the laser line points 

will improve the robustness and accuracy of a multi-view 3D 

reconstruction system. The proposed method could also be 

applied to other problems where additional 3D information 

will improve robustness and accuracy. 
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Figure 5: Empirical precision-recall curves from test 

data (the irregular profiles are caused by clusters of 

misclassified features). The descriptors found by feature 

subset selection outperform classifiers based only on one 

pixel's colour. 
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Figure 4: Classification accuracy of descriptors found 

by feature subset selection, evaluated on test data. 

Short descriptors perform as well as a descriptor 

including all 80 features. 
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